Power-commuting skew derivations on Lie ideals

被引:0
|
作者
Vincenzo De Filippis
Shuliang Huang
机构
[1] University of Messina,Department of Mathematics and Computer Science
[2] Chuzhou University,Department of Mathematics
来源
Monatshefte für Mathematik | 2015年 / 177卷
关键词
Skew derivation; Automorphism; Generalized polynomial identities; Lie ideal; 16N20; 16W25; 16N55;
D O I
暂无
中图分类号
学科分类号
摘要
Let R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} be a prime ring of characteristic different from 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document} and 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}, L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} a non-central Lie ideal of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}, (d,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d,\sigma )$$\end{document} a nonzero skew derivation of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}, n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} a fixed positive integer. If [d(x),x]n=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[d(x),x]^{n}=0$$\end{document} for all x∈L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in L$$\end{document}, then R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} satisfies s4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_{4}$$\end{document}.
引用
收藏
页码:363 / 372
页数:9
相关论文
共 50 条
  • [21] Power Values of Generalized Skew Derivations with Annihilator Conditions on Lie Ideals
    Eroglu, Munevver Pinar
    Argac, Nurcan
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (06) : 1583 - 1598
  • [22] An identity with generalized skew derivations on Lie ideals
    Nadeem ur Rehman
    Junaid Nisar
    Mohd Arif Raza
    Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 : 455 - 463
  • [23] Power values of quadratic polynomials with generalized skew derivations on Lie ideals
    Ali, Asma
    De Filippis, Vincenzo
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2021, 62 (04): : 893 - 905
  • [24] Generalized Derivations Commuting on Lie Ideals in Prime Rings
    Dhara B.
    Kar S.
    Kuila S.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2023, 69 (1) : 159 - 181
  • [25] Generalized Skew Derivations with Hypercommuting Conditions on Lie Ideals
    Carini, Luisa
    De Filippis, Vincenzo
    Scudo, Giovanni
    TAIWANESE JOURNAL OF MATHEMATICS, 2023, 27 (06): : 1053 - 1073
  • [26] b-Generalized Skew Derivations on Lie Ideals
    Vincenzo De Filippis
    Feng Wei
    Mediterranean Journal of Mathematics, 2018, 15
  • [27] b-Generalized Skew Derivations on Lie Ideals
    De Filippis, Vincenzo
    Wei, Feng
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (02)
  • [28] Nilpotent Values Induced by Generalized Skew Derivations Acting on Lie Ideals
    Dhara, B.
    Garg, C.
    SIBERIAN MATHEMATICAL JOURNAL, 2025, 66 (01) : 118 - 128
  • [29] A result concerning nilpotent values with generalized skew derivations on Lie ideals
    Sharma, R. K.
    Dhara, B.
    De Filippis, V.
    Garg, C.
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (12) : 5330 - 5341
  • [30] Identities related to a pair of generalized skew derivations on Lie ideals
    De Filippis, Vincenzo
    Nisar, Junaid
    Rehman, Nadeem ur
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 56 (2) : 645 - 658