Expression of a class 1 knotted1-like homeobox gene is down-regulated in pea compound leaf primordia

被引:0
作者
Julie Hofer
Campbell Gourlay
Anthony Michael
T.H. Noel Ellis
机构
[1] John Innes Centre,Department of Applied Genetics
[2] Colney Lane,undefined
来源
Plant Molecular Biology | 2001年 / 45卷
关键词
compound leaf; homeobox; pea; plant development;
D O I
暂无
中图分类号
学科分类号
摘要
Differences in knotted1-like (knox) gene expression may account for some of the diversity of leaf forms seen in nature. Class 1 knox genes are expressed in the compound leaf primordia of tomato but not in the simple leaf primordia of a range of species examined so far. In order to test the hypothesis that all compound leaves differ from simple leaves in this way, we isolated a class 1 knox cDNA from pea, Pskn1 (Pisum sativum knotted1) and examined its expression pattern. The encoded homeodomain of Pskn1 shares 88% identical residues with KNOTTED1 from maize and an adjacent ELK domain is present. The protein sequence of PSKN1 is 69% identical to TKN2, its nearest related sequence in tomato. Unlike TKn2, Pskn1 was not expressed in newly initiated compound leaves. The expression pattern of Pskn1 resembled those of other class 1 knox genes described in maize and Arabidopsis. Transcripts were detected in the shoot apical meristem and developing vasculature of the vegetative shoot, but expression was not detected in newly initiated and developing compound leaf primordia. The same pattern of expression was observed in the afila mutant, which is characterised by highly ramified compound leaves. Our results suggest that tomato and pea use different developmental processes in the generation of their compound leaves.
引用
收藏
页码:387 / 398
页数:11
相关论文
共 250 条
[21]  
Coen E.S.(1994) gene is required for maintenance of undifferentiated cells in Development 120 405-786
[22]  
Romero J.(1998) shoot and floral meristems and acts at a different regulatory level than the meristem genes Plant Physiol. 117 771-77
[23]  
Elliot R.(1999) and Plant Mol. Biol. 40 65-164
[24]  
Murphy G.(1995)E Plant Mol. Biol. 27 155-1887
[25]  
Carpenter R.(1994)Mosaic analysis of the Plant Cell 6 1877-3054
[26]  
Dengler N.G.(1997) mutant phenotype in maize by coordinate suppression of Development 124 3045-459
[27]  
Ellis T.H.N.(2000)-insertion alleles Plant J. 22 455-45
[28]  
Davies D.R.(1953)A conceptual framework for maize leaf development Arch. Soc. Zool. Bot. Fenn. 8 44-915
[29]  
Castleton J.A.(1998)Developmental genetics of mutants that specify knotted leaves in maize Theor. Appl. Genet. 97 905-189
[30]  
Bedford I.D.(1994)A class 1 Cell 78 181-1876