Tensor products of tautological bundles under the Bridgeland–King–Reid–Haiman equivalence

被引:0
作者
Andreas Krug
机构
[1] Universität Bonn,
来源
Geometriae Dedicata | 2014年 / 172卷
关键词
Algebraic geometry; Hilbert schemes of points; Tautological bundles; 14C05; 14F05; 14J60;
D O I
暂无
中图分类号
学科分类号
摘要
We give a description of the image of tensor products of tautological bundles on Hilbert schemes of points on surfaces under the Bridgeland–King–Reid–Haiman equivalence. Using this, some new formulas for cohomological invariants of these bundles are obtained. In particular, we give formulas for the Euler characteristic of arbitrary tensor products on the Hilbert scheme of two points and of triple tensor products in general.
引用
收藏
页码:245 / 291
页数:46
相关论文
共 18 条
[1]  
Bridgeland T(2001)The McKay correspondence as an equivalence of derived categories J. Am. Math. Soc 14 535-554
[2]  
King K(2007)Universal formulas for characteristic classes on the Hilbert schemes of points on surfaces J. Algebra 315 924-953
[3]  
Reid M(2005)Chern classes of the tangent bundle on the Hilbert scheme of points on the affine plane J. Algebraic Geom. 14 761-787
[4]  
Boissière S(2000)Sections du fibré déterminant sur l’espace de modules des faisceaux semi-stables de rang 2 sur le plan projectif Ann. Inst. Fourier (Grenoble) 50 1323-1374
[5]  
Nieper-Wißkirchen MA(2001)Sur la cohomologie d’un fibré tautologique sur le schéma de Hilbert d’une surface J. Algebraic Geom. 10 247-280
[6]  
Boissière S(2007)Sections de la puissance tensorielle du fibré tautologique sur le schéma de Hilbert des points d’une surface Bull. Lond. Math. Soc. 39 311-316
[7]  
Danila Gentiana(1989)Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques Invent. Math. 97 53-94
[8]  
Danila G(1968)Algebraic families on an algebraic surface Am. J. Math 90 511-521
[9]  
Danila G(2001)Hilbert schemes, polygraphs and the Macdonald positivity conjecture J. Am. Math. Soc. 14 941-1006
[10]  
Drezet J-M(2006)-objects and autoequivalences of derived categories Math. Res. Lett. 13 87-98