Uniform blow-up rate for compressible reactive gas model

被引:0
|
作者
Run-zhang Xu
Xiao-li Jiang
Jie Liu
机构
[1] Harbin Engineering University,College of Science
来源
Applied Mathematics and Mechanics | 2012年 / 33卷
关键词
parabolic equation; initial boundary value; nonlocal reaction; finite time blow-up; uniform blow-up rate; O175.29; 35K55; 35B44;
D O I
暂无
中图分类号
学科分类号
摘要
The Dirichlet initial-boundary value problem of a compressible reactive gas model equation with a nonlocal nonlinear source term is investigated. Under certain conditions, it can be proven that the blow-up rate is uniform in all compact subsets of the domain, and the blow-up rate is irrelative to the exponent of the diffusion term, however, relative to the exponent of the nonlocal nonlinear source.
引用
收藏
页码:129 / 138
页数:9
相关论文
共 50 条
  • [31] Blow-up and control of marginally separated boundary layers
    Braun, S
    Kluwick, A
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 363 (1830): : 1057 - 1067
  • [32] Blow-up phenomena in chemotaxis systems with a source term
    Marras, Monica
    Vernier-Piro, Stella
    Viglialoro, Giuseppe
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (11) : 2787 - 2798
  • [33] Finite time blow-up for a heat equation in RN
    Zhang, Kaiqiang
    APPLIED MATHEMATICS LETTERS, 2025, 163
  • [34] On blow-up for the supercritical defocusing nonlinear wave equation
    Shao, Feng
    Wei, Dongyi
    Zhang, Zhifei
    FORUM OF MATHEMATICS PI, 2025, 13
  • [35] Blow-up for a porous medium equation with a localized source
    Chen, YP
    Xie, CH
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 159 (01) : 79 - 93
  • [36] BLOW-UP FOR PARABOLIC EQUATIONS AND SYSTEMS WITH NONNEGATIVE POTENTIAL
    Guo, Yung-Jen Lin
    Shimojo, Masahiko
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (03): : 995 - 1005
  • [37] Dispersive blow-up for nonlinear Schrodinger equations revisited
    Bona, J. L.
    Ponce, G.
    Saut, J-C
    Sparber, C.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (04): : 782 - 811
  • [38] Blow-up phenomena for a chemotaxis system with flux limitation
    Marras, M.
    Vernier-Piro, S.
    Yokota, T.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 515 (01)
  • [39] Optimal decay rate and blow-up of solution for a classical thermoelastic system with viscoelastic damping and nonlinear sources
    Nhan, Le Cong
    Nguyen, Y. Van
    Truong, Le Xuan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (05):
  • [40] On a sharp lower bound on the blow-up rate for the L2 critical nonlinear Schrodinger equation
    Merle, F
    Raphael, P
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 19 (01) : 37 - 90