Uniform blow-up rate for compressible reactive gas model

被引:0
|
作者
Run-zhang Xu
Xiao-li Jiang
Jie Liu
机构
[1] Harbin Engineering University,College of Science
来源
Applied Mathematics and Mechanics | 2012年 / 33卷
关键词
parabolic equation; initial boundary value; nonlocal reaction; finite time blow-up; uniform blow-up rate; O175.29; 35K55; 35B44;
D O I
暂无
中图分类号
学科分类号
摘要
The Dirichlet initial-boundary value problem of a compressible reactive gas model equation with a nonlocal nonlinear source term is investigated. Under certain conditions, it can be proven that the blow-up rate is uniform in all compact subsets of the domain, and the blow-up rate is irrelative to the exponent of the diffusion term, however, relative to the exponent of the nonlocal nonlinear source.
引用
收藏
页码:129 / 138
页数:9
相关论文
共 50 条
  • [21] Blow-up for a class of nonlinear parabolic problems
    Andreu, F
    Mazón, JM
    Simondon, F
    Toledo, J
    ASYMPTOTIC ANALYSIS, 2002, 29 (02) : 143 - 155
  • [22] A boundary blow-up problem with a nonlocal reaction
    Garcia-Melian, Jorge
    Sabina de Lis, Jose C.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (05) : 2774 - 2792
  • [23] Blow-up of ion acoustic waves in a plasma
    Korpusov, M. O.
    SBORNIK MATHEMATICS, 2011, 202 (01) : 35 - 60
  • [24] On the blow-up of the solution of an equation with a gradient nonlinearity
    Korpusov, M. O.
    DIFFERENTIAL EQUATIONS, 2012, 48 (06) : 796 - 808
  • [25] Finite Time Blow-up in a Delayed Diffusive Population Model with Competitive Interference
    Parshad, Rana D.
    Bhowmick, Suman
    Quansah, Emmanuel
    Agrawal, Rashmi
    Upadhyay, Ranjit Kumar
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2017, 18 (05) : 435 - 450
  • [26] On Large and Small Data Blow-Up Solutions in the Trojan Y Chromosome Model
    Takyi, Eric M.
    Beauregard, Matthew A.
    Griffin, Thomas
    Bobo, Landrey
    Parshad, Rana D.
    AXIOMS, 2022, 11 (03)
  • [27] The blow-up properties for a degenerate semilinear parabolic equation with nonlocal source
    Chen Y.
    Liu Q.
    Xie C.
    Applied Mathematics-A Journal of Chinese Universities, 2002, 17 (4) : 413 - 424
  • [28] Blow-up for a system with time-dependent generators
    Perez, Aroldo
    Villa, Jose
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2010, 7 : 207 - 215
  • [29] Blow-up in nonlocal reaction-diffusion equations
    Souplet, P
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (06) : 1301 - 1334
  • [30] ADAPTIVITY AND BLOW-UP DETECTION FOR NONLINEAR EVOLUTION PROBLEMS
    Cangiani, Andrea
    Georgoulis, Emmanuil H.
    Kyza, Irene
    Metcalfe, Stephen
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (06) : A3833 - A3856