Genesis of the Angeer Yinwula Pb–Zn deposit, Inner Mongolia, China: constraints from fluid inclusions, C–H–O–S–Pb isotope systematics, and zircon U–Pb geochronology

被引:0
|
作者
Han-Lun Liu
Yi Han
Ke-Yong Wang
Wen Li
Jian Li
Wen-Yan Cai
Li-Juan Fu
机构
[1] Jilin University,College of Earth Sciences
[2] Inner Mongolia Shandong Gold Geological Minerals Survey Co.,State Key Laboratory of Geological Processes and Mineral Resources (GPMR)
[3] Ltd,undefined
[4] China University of Geosciences,undefined
来源
Arabian Journal of Geosciences | 2018年 / 11卷
关键词
Fluid inclusions; Geochemistry; Zircon U–Pb geochronology; Angeer Yinwula; Pb–Zn deposit; Inner Mongolia;
D O I
暂无
中图分类号
学科分类号
摘要
The Angeer Yinwula Pb–Zn deposit of Inner Mongolia, China, is located in the Erlianhot–Dongwuqi metallogenic belt, which is considered to be the eastern part of the Central Asian Orogenic Belt. We used the ore geology, fluid inclusion, isotopes, and zircon U–Pb geochronology to elucidate the genesis and tectonic setting of the deposit. The deposit belongs to the moderate-temperature hydrothermal-vein type, and most of the ore bodies occurred in the quartz diorite intrusions and silty slate country rocks of the Devonian Angeer Yinwula Group. Fluid inclusion petrography and microthermometry results show that the inclusions that developed in the different mineralization stages changed from the LV type (vapor-rich two-phase) + S type (daughter-mineral-bearing three-phase) + VL type (liquid-rich two-phase) to the VL type + LV type and eventually evolved into the VL type, and the ore-forming fluids changed from a moderate-temperature and moderate- to high-salinity, boiling fluid system to a low-temperature and low-salinity H2O–NaCl system. The isotope (C, H, O, S) characteristics suggest that the ore-forming fluids were derived from a magmatic source, and the lead was derived from a deep-seated mantle-derived magma and also included some crustal material. The LA–ICP–MS zircon U–Pb age of the quartz diorite is 152.0 ± 1.5 Ma, which is the best estimate for the age of mineralization of the deposit. Overall, we suggest that the deposit formed in a Late Jurassic Paleo-Pacific Plate subduction setting, although this hypothesis needs to be further tested by conducting computational simulations in the field of emerging computational geosciences.
引用
收藏
相关论文
共 50 条
  • [31] Fluid Inclusions, C-H-O-S Isotope and Geochronology of the Bujinhei Pb-Zn Deposit in the Southern Great Xing′an Range of Northeast China: Implication for Ore Genesis
    Zhang, Xuebing
    Wang, Keyong
    Fu, Lijuan
    Zhang, Miao
    Konare, Yassa
    Peng, Dawei
    Cai, Wenyan
    RESOURCE GEOLOGY, 2017, 67 (02) : 207 - 227
  • [32] Ore Genesis of the Chuduoqu Pb-Zn-Cu Deposit in the Tuotuohe Area, Central Tibet: Evidence from Fluid Inclusions and C-H-O-S-Pb Isotopes Systematics
    Sun, Yong-Gang
    Li, Bi-Le
    Sun, Feng-Yue
    Qian, Ye
    Yu, Run-Tao
    Zhao, Tuo-Fei
    Dong, Jun-Lin
    MINERALS, 2019, 9 (05):
  • [33] Ore genesis of Qingyunshan Cu-Au deposit in the Dehua-Youxi area of Fujian Province, southeastern China: Constraints from U-Pb and Re-Os geochronology, fluid inclusions, and H-O-S-Pb isotope data
    Xiao, Fan
    Fan, Fei-Peng
    Xing, Guang-Fu
    Jiang, Shao-Yong
    ORE GEOLOGY REVIEWS, 2021, 132
  • [34] Fluid inclusion, H-O isotope and Pb-Pb age constraints on the genesis of the Yongping copper deposit, South China
    Zhu, Xiao-Ting
    Ni, Pei
    Wang, Guo-Guang
    Cai, Yi-Tao
    Chen, Hui
    Pan, Jun-Yi
    JOURNAL OF GEOCHEMICAL EXPLORATION, 2016, 171 : 55 - 70
  • [35] Genesis of the Yidonglinchang gold deposit, Lesser Xing'an Range, China: Insights from fluid inclusions, H-O-S-Pb isotopes, and Sm-Nd and U-Pb geochronology
    Zhao, Zhonghai
    Zhao, Xiang
    Yin, Yechang
    Liang, Shanshan
    Chen, Jun
    Li, Chenglu
    Zhou, Jiazheng
    ORE GEOLOGY REVIEWS, 2023, 163
  • [36] Factors Controlling Deposition of Metallic Minerals in the Meng'entaolegai Ag-Pb-Zn Deposit, Inner Mongolia, China: Evidence from Fluid Inclusions, Isotope Systematics, and Thermodynamic Model
    Yang, He
    Ma, Wanli
    Wang, Rui
    Ma, Xueli
    Wang, Keyong
    JOURNAL OF EARTH SCIENCE, 2020, 31 (02) : 271 - 286
  • [37] Genesis of Harizha Ag-Pb-Zn deposit in the eastern Kunlun Orogen, NW China: Evidence of fluid inclusions and C-H-O-S-Pb isotopes
    Fan, Xingzhu
    Sun, Fengyue
    Xu, Chenghan
    Xin, Wei
    Wang, YingChao
    Zhang, Yong
    RESOURCE GEOLOGY, 2021, 71 (03) : 177 - 201
  • [38] Genesis of the stratiform Zhenzigou Pb-Zn deposit in the North China Craton: Rb-Sr and C-O-S-Pb isotope constraints
    Ma, Yu-Bo
    Bagas, Leon
    Xing, Shu-Wen
    Zhang, Shou-Ting
    Wang, Rui-Jiang
    Li, Nan
    Zhang, Zeng-Jie
    Zou, Yue-Fei
    Yang, Xiu-Qing
    Wang, Yan
    Zhang, Yong
    ORE GEOLOGY REVIEWS, 2016, 79 : 88 - 104
  • [39] Fluid evolution and ore genesis of the Chaobuleng skarn Fe-Zn polymetallic deposit, Northeast China: Evidence from fluid inclusions, C-O-S-Pb isotopes, and geochronology
    Sun, Qing-fei
    Wang, Ke-yong
    Wang, Yi-cun
    Yang, He
    Li, Jian
    Ma, Xue-li
    JOURNAL OF GEOCHEMICAL EXPLORATION, 2021, 227
  • [40] Formation of the Lianhuashan Cu deposit in the southern Great Xing'an Range, NE China: Constraints from fluid inclusions, whole-rock geochemistry, zircon U-Pb geochronology, and H-O-S-Pb isotopes
    Ma, Xue-li
    Shi, Kai-tuo
    Wang, Ke-yong
    Lai, Chun-kit
    Wang, Rui
    ORE GEOLOGY REVIEWS, 2024, 174