Boundedness of Hardy-Littlewood maximal operator on block spaces with variable exponent

被引:0
作者
Ka Luen Cheung
Kwok-Pun Ho
机构
[1] The Hong Kong Institute of Education,Department of Mathematics and Information Technology
来源
Czechoslovak Mathematical Journal | 2014年 / 64卷
关键词
block space; variable exponent analysis; Hardy-Littlewood maximal operator; 42B25; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
The family of block spaces with variable exponents is introduced. We obtain some fundamental properties of the family of block spaces with variable exponents. They are Banach lattices and they are generalizations of the Lebesgue spaces with variable exponents. Moreover, the block space with variable exponents is a pre-dual of the corresponding Morrey space with variable exponents.
引用
收藏
页码:159 / 171
页数:12
相关论文
共 40 条
  • [21] Sharp Inequalities for the Hardy-Littlewood Maximal Operator on Finite Directed Graphs
    Zhang, Xiao
    Liu, Feng
    Zhang, Huiyun
    MATHEMATICS, 2021, 9 (09)
  • [22] The Hardy-Littlewood maximal operator and BLO1/log class of exponents
    Kopaliani, Tengiz
    Zviadadze, Shalva
    GEORGIAN MATHEMATICAL JOURNAL, 2016, 23 (03) : 393 - 398
  • [23] Dimension free bounds for the vector-valued Hardy-Littlewood maximal operator
    Deleaval, Luc
    Kriegler, Christoph
    REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (01) : 101 - 123
  • [24] Sharp weighted bounds for the Hardy-Littlewood maximal operators on Musielak-Orlicz spaces
    Lin, Haibo
    ARCHIV DER MATHEMATIK, 2016, 106 (03) : 275 - 284
  • [25] On the Boundedness of Marcinkiewicz Integrals on Variable Exponent Herz-type Hardy Spaces
    Heraiz, Rabah
    KYUNGPOOK MATHEMATICAL JOURNAL, 2019, 59 (02): : 259 - 275
  • [26] SPARSE DOMINATION FOR THE LATTICE HARDY LITTLEWOOD MAXIMAL OPERATOR
    Hanninen, Timo S.
    Lorist, Emiel
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (01) : 271 - 284
  • [27] Variation Inequalities for the Hardy-Littlewood Maximal Function on Finite Directed Graphs
    Liu, Feng
    Zhang, Xiao
    MATHEMATICS, 2022, 10 (06)
  • [28] Two-weight estimates for Hardy-Littlewood maximal functions and Hausdorff operators on p-adic Herz spaces
    Kieu Huu Dung
    Dao Van Duong
    IZVESTIYA MATHEMATICS, 2023, 87 (05) : 920 - 940
  • [29] Hardy-Littlewood, Bessel-Riesz, and Fractional Integral Operators in Anisotropic Morrey and Campanato Spaces
    Michael Ruzhansky
    Durvudkhan Suragan
    Nurgissa Yessirkegenov
    Fractional Calculus and Applied Analysis, 2018, 21 : 577 - 612
  • [30] HARDY-LITTLEWOOD, BESSEL-RIESZ, AND FRACTIONAL INTEGRAL OPERATORS IN ANISOTROPIC MORREY AND CAMPANATO SPACES
    Ruzhansky, Michael
    Suragan, Durvudkhan
    Yessirkegenov, Nurgissa
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (03) : 577 - 612