Convergence of Hybrid Steepest-Descent Methods for Variational Inequalities

被引:0
作者
H. K. Xu
T. H. Kim
机构
[1] University of Durban-Westville,Department of Mathematics
[2] Pukyong National University,Division of Mathematical Sciences
来源
Journal of Optimization Theory and Applications | 2003年 / 119卷
关键词
Iterative algorithms; hybrid steepest-descent methods; convergence; nonexpansive mappings; Hilbert space; constrained pseudoinverses;
D O I
暂无
中图分类号
学科分类号
摘要
Assume that F is a nonlinear operator on a real Hilbert space H which is η-strongly monotone and κ-Lipschitzian on a nonempty closed convex subset C of H. Assume also that C is the intersection of the fixed point sets of a finite number of nonexpansive mappings on H. We devise an iterative algorithm which generates a sequence (xn) from an arbitrary initial point x0∈H. The sequence (xn) is shown to converge in norm to the unique solution u* of the variational inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left\langle {F(u*),\user1{v} - u*} \right\rangle \geqslant 0$$ \end{document}Applications to constrained pseudoinverse are included.
引用
收藏
页码:185 / 201
页数:16
相关论文
共 15 条
  • [1] Jaillet P.(1990)Variational Inequalities and the Pricing of American Options Acta Applicandae Mathematicae 21 263-289
  • [2] Lamberton D.(1998)Minimizing Certain Convex Functions over the Intersection of the Fixed-Point Sets of Nonexpansive Mappings Numerical Functional Analysis and Optimization 19 33-56
  • [3] Lapeyre B.(1967)Fixed Points of Nonexpanding Maps American Mathematical Society Bulletin 73 957-961
  • [4] Deutsch F.(1996)The Approximation of Fixed Points of Compositions of Nonexpansive Mappings in Hilbert Spaces Journal of Mathematical Analysis and Applications 202 150-159
  • [5] Yamada I.(1992)Approximation of Fixed Points of Nonexpansive Mappings Archiv der Mathematik 58 486-491
  • [6] Halpern B.(2003)An Iterative Approach to Quadratic Optimization Journal of Optimization Theory and Applications 116 659-678
  • [7] Bauschke H. H.(1994)An Iterative Algorithm for the Variational Inequality Problem Computational and Applied Mathematics 13 103-114
  • [8] Wittmann R.(1998)An Interior-Point Method with Bregman Functions for the Variational Inequality Problem with Paramonotone Operators Mathematical Programming 81 373-400
  • [9] Xu H. K.(1996)On Projection Algorithms for Solving Convex Feasibility Problems SIAM Review 38 367-426
  • [10] Iusem A. N.(undefined)undefined undefined undefined undefined-undefined