Overexpression of the Polygonum cuspidatum PcDREB2A Gene Encoding a DRE-Binding Transcription Factor Enhances the Drought Tolerance of Transgenic Arabidopsis thaliana

被引:0
|
作者
Hongyan Hu
Xiaowei Wang
Zhijun Wu
Mo Chen
Tuanyao Chai
Hong Wang
机构
[1] University of Chinese Academy of Sciences,College of Life Sciences
[2] Chinese Academy of Sciences,Institute of Genetics and Developmental Biology
来源
Journal of Plant Biology | 2022年 / 65卷
关键词
DREB; Transcription factor; Transgenic ; Drought tolerance;
D O I
暂无
中图分类号
学科分类号
摘要
Plants have evolved complex signaling networks that enable them to adapt to adverse environmental conditions. The dehydration-responsive element-binding (DREB) transcription factors are important for plant responses to abiotic stresses. In this study, a new member of the AP2/ERF transcription factor gene family, PcDREB2A, was cloned and characterized from Polygonum cuspidatum, a traditional Chinese medicinal herb. PcDREB2A, which includes a typical AP2 domain, was clustered in the A-2 subgroup of the DREB subfamily. At the seedling stage, PcDREB2A expression was induced by cold, salt, and drought stresses. A yeast one-hybrid assay and an analysis of transiently transformed tobacco revealed that PcDREB2A can specifically bind to the DRE motif and transactivate reporter gene expression. Following 200 and 250 mM mannitol treatments, the PcDREB2A-overexpressing Arabidopsis thaliana lines had longer roots and a significantly higher fresh weight than the wild-type plants. Furthermore, under drought stress conditions, the PcDREB2A-overexpressing A. thaliana plants accumulated less malondialdehyde than the control plants. These results indicate that PcDREB2A encodes a novel DREB transcription factor in P. cuspidatum. Furthermore, the data generated in this study may be useful for researchers and breeders interested in genetically engineering plants to increase drought tolerance without inhibiting growth.
引用
收藏
页码:505 / 515
页数:10
相关论文
共 50 条
  • [31] Over-expression of Arabidopsis thaliana β-carotene hydroxylase (chyB) gene enhances drought tolerance in transgenic tobacco
    Zhao, Qing
    Wang, Gang
    Ji, Jing
    Jin, Chao
    Wu, Weidang
    Zhao, Jia
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2014, 23 (02) : 190 - 198
  • [32] Over-expression of Arabidopsis thaliana β-carotene hydroxylase (chyB) gene enhances drought tolerance in transgenic tobacco
    Qing Zhao
    Gang Wang
    Jing Ji
    Chao Jin
    Weidang Wu
    Jia Zhao
    Journal of Plant Biochemistry and Biotechnology, 2014, 23 : 190 - 198
  • [33] Characterization of the novel gene BjDREB1B encoding a DRE-binding transcription factor from Brassica juncea L.
    Cong, Lin
    Chai, Tuan-Yao
    Zhang, Yu-Xiu
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2008, 371 (04) : 702 - 706
  • [34] The SsWRKY1 transcription factor of Saccharum spontaneum enhances drought tolerance in transgenic Arabidopsis thaliana and interacts with 21 potential proteins to regulate drought tolerance in S. spontaneum
    Shen, Qing-Qing
    Wang, Tian-Ju
    Wang, Jun-Gang
    He, Li-Lian
    Zhao, Ting-Ting
    Zhao, Xue-Ting
    Xie, Lin-Yan
    Qian, Zhen-Feng
    Wang, Xian-Hong
    Liu, Lu-Feng
    Chen, Shu-Ying
    Zhang, Shu-Zhen
    Li, Fu-Sheng
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 199
  • [35] Ectopic Expression of Riboflavin-binding Protein Gene TsRfBP Paradoxically Enhances Both Plant Growth and Drought Tolerance in Transgenic Arabidopsis thaliana
    Benliang Deng
    Hansong Dong
    Journal of Plant Growth Regulation, 2013, 32 : 170 - 181
  • [36] Ectopic Expression of Riboflavin-binding Protein Gene TsRfBP Paradoxically Enhances Both Plant Growth and Drought Tolerance in Transgenic Arabidopsis thaliana
    Deng, Benliang
    Dong, Hansong
    JOURNAL OF PLANT GROWTH REGULATION, 2013, 32 (01) : 170 - 181
  • [37] Overexpression of a 'Beta' MYB Factor Gene, VhMYB15, Increases Salinity and Drought Tolerance in Arabidopsis thaliana
    Han, Jiaxin
    Dai, Jing
    Chen, Zhe
    Li, Wenhui
    Li, Xingguo
    Zhang, Lihua
    Yao, Anqi
    Zhang, Bingxiu
    Han, Deguo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (03)
  • [38] Ammopiptanthus mongolicus stress-responsive NAC gene enhances the tolerance of transgenic Arabidopsis thaliana to drought and cold stresses
    Pang, Xinyue
    Xue, Min
    Ren, Meiyan
    Nan, Dina
    Wu, Yaqi
    Guo, Huiqin
    GENETICS AND MOLECULAR BIOLOGY, 2019, 42 (03) : 624 - 634
  • [39] TaWRKY71, a WRKY Transcription Factor from Wheat, Enhances Tolerance to Abiotic Stress in Transgenic Arabidopsis thaliana
    Xu, Q.
    Feng, W. J.
    Peng, H. R.
    Ni, Z. F.
    Sun, Q. X.
    CEREAL RESEARCH COMMUNICATIONS, 2014, 42 (01) : 48 - +
  • [40] The Conringia planisiliqua Alfin-like2 gene enhances drought and salt tolerance in Arabidopsis thaliana
    Zhu, Yanfei
    Chen, Quanjia
    Liu, Xiaodong
    Qu, Yanying
    THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY, 2021, 33 (04) : 427 - 441