Global existence of strong solutions of Navier–Stokes equations with non-Newtonian potential for one-dimensional isentropic compressible fluids

被引:2
|
作者
Hongzhi Liu
Hongjun Yuan
Jiezeng Qiao
Fanpei Li
机构
[1] Jilin University,Institute of Mathematics
[2] Inner Mongolia Finance and Economics College,undefined
关键词
76N10; 76A05; Navier–Stokes equations; Isentropic compressible fluids; Global strong solutions; Vacuum; Non-Newtonian potential;
D O I
暂无
中图分类号
学科分类号
摘要
We consider strong solutions to the initial boundary value problems for the isentropic compressible Navier–Stokes equations in one dimension: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho\left\{\begin{array}{lll} t+(\rho u)_x=0\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\, {\rm in}\,(0,T)\times(0,1)\\ (\rho u )_t+(\rho u^2)_x+\rho \Phi_x-(\mu( \rho )u_x)_x+P_x=0\quad\quad {\rm in}\,(0,T)\times(0,1) \\\left(\left(\frac{\delta(\Phi_x)^2\,+\,1}{(\Phi_x)^2\,+\,\delta}\right)^{\frac{2-p}{2}}\Phi_x\right)_x=4\pi g(\rho-\frac{1}{|\Omega|}\int\nolimits_\Omega \rho dx\,\,\,\, )\quad\,\, {\rm in}\,(0,T)\times(0,1)\end{array}\right.$$\end{document}Here, the Φ is a non-Newtonian potential and strong solutions of the problem and obtains the uniqueness under the compatibility condition.
引用
收藏
页码:865 / 878
页数:13
相关论文
共 50 条
  • [41] Asymptotic Stability for One-dimensional Motion of Non-Newtonian Compressible Fluids
    Shi, Xiao-ding
    Wang, Teng
    Zhang, Zhen
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (01): : 99 - 110
  • [42] Asymptotic Stability for One-dimensional Motion of Non-Newtonian Compressible Fluids
    Xiao-ding SHI
    Teng WANG
    Zhen ZHANG
    Acta Mathematicae Applicatae Sinica, 2014, (01) : 99 - 110
  • [43] Asymptotic stability for one-dimensional motion of non-Newtonian compressible fluids
    Xiao-ding Shi
    Teng Wang
    Zhen Zhang
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 99 - 110
  • [44] GLOBAL SOLUTIONS TO THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES-POISSON EQUATIONS WITH LARGE DATA
    Tan, Zhong
    Yang, Tong
    Zhao, Huijiang
    Zou, Qingyang
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (02) : 547 - 571
  • [45] The convergence of non-Newtonian fluids to Navier-Stokes equations
    Guo, Boling
    Guo, Chunxiao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (02) : 468 - 478
  • [46] Global existence of classical solutions for isentropic compressible Navier-Stokes equations with small initial density
    Qian, Jinju
    Zhao, Junning
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (11) : 6830 - 6850
  • [47] A Strong Solution of Navier-Stokes Equations with a Rotation Effect for Isentropic Compressible Fluids
    Chen, Tuowei
    Zhang, Yongqian
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (05) : 1579 - 1605
  • [48] A STRONG SOLUTION OF NAVIER-STOKES EQUATIONS WITH A ROTATION EFFECT FOR ISENTROPIC COMPRESSIBLE FLUIDS
    陈拓炜
    张永前
    Acta Mathematica Scientia, 2021, 41 (05) : 1579 - 1605
  • [49] A Strong Solution of Navier-Stokes Equations with a Rotation Effect for Isentropic Compressible Fluids
    Tuowei Chen
    Yongqian Zhang
    Acta Mathematica Scientia, 2021, 41 : 1579 - 1605
  • [50] GLOBAL STRONG/CLASSICAL SOLUTIONS TO THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES-ALLEN-CAHN SYSTEM WITH
    Chen, Zhengzheng
    Duan, Ran
    He, Lin
    Li, Yeping
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (03): : 1146 - 1186