Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces

被引:0
作者
Chengchun Hao
机构
[1] Academy of Mathematics and Systems Science,Institute of Mathematics
[2] and Hua Loo-Keng Key Laboratory of Mathematics CAS,undefined
来源
Zeitschrift für angewandte Mathematik und Physik | 2012年 / 63卷
关键词
35Q92; 35G55; 35M31; 92C17; Chemotaxis model; Cauchy problem; Global well-posedness; Critical Besov spaces;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the Cauchy problem of a multidimensional chemotaxis model with initial data in critical Besov spaces. The global existence and uniqueness of the strong solution is shown for initial data close to a constant equilibrium state.
引用
收藏
页码:825 / 834
页数:9
相关论文
共 39 条
[1]  
Chemin J.Y.(2001)About lifespan of regular solutions of equations related to viscoelastic fluids SIAM J. Math. Anal. 33 84-112
[2]  
Masmoudi N.(1992)Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes J. Differ. Equ. 121 314-328
[3]  
Chemin J.Y.(2003)A chemotaxis model motivated by angiogenesis C. R. Acad. Sci. Paris Ser. I 336 141-146
[4]  
Lerner N.(2004)Global solutions of some chemotaxis and angiogenesis systems in high space dimensions Milan J. Math. 72 1-28
[5]  
Corrias L.(2000)Global existence in critical spaces for compressible Navier-Stokes equations Invent. Math. 141 579-614
[6]  
Perthame B.(2001)Global existence in critical spaces for flows of compressible viscous and heat-conductive gases Arch. Ration. Mech. Anal. 160 1-39
[7]  
Zaag H.(2009)Cauchy problem for viscous rotating shallow water equations J. Differ. Equ. 247 3234-3257
[8]  
Corrias L.(2003)From 1970 until present: the Keller-Segel model in chemotaxis and its consequences: I Jahresber. Deutsch. Math.-Verein 105 103-165
[9]  
Perthame B.(1970)Initiation of slime mold aggregation viewed as an instability J. Theor. Biol. 26 399-415
[10]  
Zaag H.(1971)Model for chemotaxis J. Theor. Biol. 30 225-234