Generalized sparse filtering for rotating machinery fault diagnosis

被引:0
|
作者
Chun Cheng
Yan Hu
Jinrui Wang
Haining Liu
Michael Pecht
机构
[1] Jiangsu Normal University,School of Mechatronic Engineering
[2] University of Maryland,Department of Mechanical Engineering, CALCE, Center for Advanced Life Cycle Engineering
[3] Shandong University of Science and Technology,College of Mechanical and Electronic Engineering
[4] University of Jinan,School of Electrical Engineering
来源
The Journal of Supercomputing | 2021年 / 77卷
关键词
Intelligent fault diagnosis; Sparse filtering; Unsupervised feature learning; Rotating machinery;
D O I
暂无
中图分类号
学科分类号
摘要
This paper develops generalized sparse filtering (GSF) by applying general norm normalization to improve the feature learning ability. A rotating machinery fault diagnosis method is then developed by combining the GSF and softmax regression. A rolling bearing dataset is applied to validate the performance of the developed method. The influences of normalization parameters on the diagnostic performance are investigated in detail, and thus, the best parameter combinations are determined based on the diagnostic accuracy and computing time. A planetary gearbox dataset is also applied to further validate the diagnostic performance on rotating machinery. Finally, the mechanism of the GSF is explained using a simple example. The results show that the GSF has a more powerful feature learning capacity than standard sparse filtering, and the developed method can obtain excellent diagnostic performance. Two variants of the developed method are recommended for the rotating machinery fault diagnosis.
引用
收藏
页码:3402 / 3421
页数:19
相关论文
共 50 条
  • [21] Sparse Representation Classification With Structured Dictionary Design Strategy for Rotating Machinery Fault Diagnosis
    Kong, Yun
    Wang, Tianyang
    Qin, Zhaoye
    Chu, Fulei
    IEEE ACCESS, 2021, 9 : 10012 - 10024
  • [22] Fast convolution sparse filtering and its application on gearbox fault diagnosis
    Zhang, Zongzhen
    Li, Shunming
    An, Zenghui
    Xin, Yu
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2020, 234 (09) : 2291 - 2304
  • [23] Intelligent fault diagnosis method for rotating machinery via dictionary learning and sparse representation-based classification
    Han, Te
    Jiang, Dongxiang
    Sun, Yankui
    Wang, Nanfei
    Yang, Yizhou
    MEASUREMENT, 2018, 118 : 181 - 193
  • [24] Enhanced K-Nearest Neighbor for Intelligent Fault Diagnosis of Rotating Machinery
    Lu, Jiantao
    Qian, Weiwei
    Li, Shunming
    Cui, Rongqing
    APPLIED SCIENCES-BASEL, 2021, 11 (03): : 1 - 15
  • [25] Lightweight and intelligent model based on enhanced sparse filtering for rotating machine fault diagnosis
    Ling, Yunhan
    Fu, Dianyu
    Jiang, Peng
    Sun, Yong
    Yuan, Chao
    Huang, Dali
    Lu, Jingfeng
    Lu, Siliang
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2024, 46 (05) : 858 - 870
  • [26] Neurofuzzy methodologies for rotating machinery fault diagnosis
    Yan, T
    Rong, CJ
    ISTM/2005: 6th International Symposium on Test and Measurement, Vols 1-9, Conference Proceedings, 2005, : 1061 - 1063
  • [27] A review of fault diagnosis methods for rotating machinery
    Shi, Zhenjin
    Li, Yueyang
    Liu, Shuai
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2020, : 1618 - 1623
  • [28] A method for intelligent fault diagnosis of rotating machinery
    Chen, CZ
    Mo, CT
    DIGITAL SIGNAL PROCESSING, 2004, 14 (03) : 203 - 217
  • [29] A new fault diagnosis method of rotating machinery
    Chen, Chih-Hao
    Shyu, Rong-Juin
    Ma, Chih-Kao
    SHOCK AND VIBRATION, 2008, 15 (06) : 585 - 598
  • [30] A Novel Method for Fault Diagnosis of Rotating Machinery
    Tang, Meng
    Liao, Yaxuan
    Luo, Fan
    Li, Xiangshun
    ENTROPY, 2022, 24 (05)