Real-time analysis of the behaviour of groups of mice via a depth-sensing camera and machine learning

被引:0
|
作者
Fabrice de Chaumont
Elodie Ey
Nicolas Torquet
Thibault Lagache
Stéphane Dallongeville
Albane Imbert
Thierry Legou
Anne-Marie Le Sourd
Philippe Faure
Thomas Bourgeron
Jean-Christophe Olivo-Marin
机构
[1] Institut Pasteur,
[2] BioImage Analysis Unit,undefined
[3] CNRS UMR 3691,undefined
[4] Human Genetics and Cognitive Functions,undefined
[5] Institut Pasteur,undefined
[6] UMR 3571 CNRS,undefined
[7] University Paris-Diderot,undefined
[8] Sorbonne Université,undefined
[9] CNRS UMR 8246,undefined
[10] INSERM,undefined
[11] Neurosciences Paris Seine - Institut de Biologie Paris-Seine,undefined
[12] Institut Pasteur,undefined
[13] FabLab,undefined
[14] Center for Innovation and Technological research,undefined
[15] Aix-Marseille Université,undefined
[16] CNRS,undefined
[17] LPL,undefined
[18] UMR 7309,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Preclinical studies of psychiatric disorders use animal models to investigate the impact of environmental factors or genetic mutations on complex traits such as decision-making and social interactions. Here, we introduce a method for the real-time analysis of the behaviour of mice housed in groups of up to four over several days and in enriched environments. The method combines computer vision through a depth-sensing infrared camera, machine learning for animal and posture identification, and radio-frequency identification to monitor the quality of mouse tracking. It tracks multiple mice accurately, extracts a list of behavioural traits of both individuals and the groups of mice, and provides a phenotypic profile for each animal. We used the method to study the impact of Shank2 and Shank3 gene mutations—mutations that are associated with autism—on mouse behaviour. Characterization and integration of data from the behavioural profiles of Shank2 and Shank3 mutant female mice revealed their distinctive activity levels and involvement in complex social interactions.
引用
收藏
页码:930 / 942
页数:12
相关论文
共 50 条
  • [1] Real-time analysis of the behaviour of groups of mice via a depth-sensing camera and machine learning
    de Chaumont, Fabrice
    Ey, Elodie
    Torquet, Nicolas
    Lagache, Thibault
    Dallongeville, Stephane
    Imbert, Albane
    Legou, Thierry
    Le Sourd, Anne-Marie
    Faure, Philippe
    Bourgeron, Thomas
    Olivo-Marin, Jean-Christophe
    NATURE BIOMEDICAL ENGINEERING, 2019, 3 (11) : 930 - 942
  • [2] Real-Time Tracking of Laryngeal Motion via the Surface Depth-Sensing Technique for Radiotherapy in Laryngeal Cancer Patients
    Lee, Wan-Ju
    Leu, Yi-Shing
    Chen, Jing-Sheng
    Dai, Kun-Yao
    Hou, Tien-Chi
    Chang, Chung-Ting
    Li, Chi-Jung
    Hua, Kai-Lung
    Chen, Yu-Jen
    BIOENGINEERING-BASEL, 2023, 10 (08):
  • [3] Real-time control of 3D virtual human motion using a depth-sensing camera for agricultural machinery training
    Wang, Chengfeng
    Ma, Qin
    Zhu, Dehai
    Chen, Hong
    Yang, Zhoutuo
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 58 (3-4) : 776 - 783
  • [4] Real-time particle pollution sensing using machine learning
    Grant-Jacob, James A.
    Mackay, Benita S.
    Baker, James A. G.
    Heath, Daniel J.
    Xie, Yunhui
    Loxham, Matthew
    Eason, Robert W.
    Mills, Ben
    OPTICS EXPRESS, 2018, 26 (21): : 27237 - 27246
  • [5] Real-time measurement of pelvis and trunk kinematics during treadmill locomotion using a low-cost depth-sensing camera: A concurrent validity study
    Macpherson, Tom W.
    Taylor, Jonathan
    McBain, Thomas
    Weston, Matthew
    Spears, Iain R.
    JOURNAL OF BIOMECHANICS, 2016, 49 (03) : 474 - 478
  • [6] EagleSense: Tracking People and Devices in Interactive Spaces using Real-Time Top-View Depth-Sensing
    Wu, Chi-Jui
    Houben, Steven
    Marquardt, Nicolai
    PROCEEDINGS OF THE 2017 ACM SIGCHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'17), 2017, : 3929 - 3942
  • [7] Towards real-time secured IP camera via state machine architecture
    Tran A.C.
    Nguyen-Van L.
    Duong-Trung N.
    International Journal of Information Technology, 2024, 16 (1) : 329 - 336
  • [8] Robust Real-Time Human Perception with Depth Camera
    Zhang, Guyue
    Tian, Luchao
    Liu, Ye
    Liu, Jun
    Liu, Xiang An
    Liu, Yang
    Chen, Yan Qiu
    ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 304 - 310
  • [9] Real-time Depth Completion using Radar and Camera
    Abdulaaty, Omar
    Schroeder, Gregory
    Hussein, Ahmed
    Albers, Franz
    Bertram, Torsten
    2022 IEEE INTERNATIONAL CONFERENCE ON VEHICULAR ELECTRONICS AND SAFETY (ICVES), 2022,
  • [10] A Real-Time Machine Learning Approach for Sentiment Analysis
    Sarkar, Souvik
    Mallick, Partho
    Banerjee, Aiswaryya
    INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS, VOL 1, 2015, 339 : 705 - 717