Restriction to symmetric subgroups of unitary representations of rank one semisimple Lie groups

被引:0
作者
B. Speh
G. Zhang
机构
[1] Cornell University,Department of Mathematics
[2] Chalmers University of Technology,Department of Mathematical Sciences
[3] Göteborg University,Department of Mathematical Sciences
来源
Mathematische Zeitschrift | 2016年 / 283卷
关键词
Holomorphic Discrete Series; Complementary Series Representations; Discrete Components; Intertwining Operator; Harish-Chandra Modules;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the spherical complementary series of rank one Lie groups Hn=SO0(n,1;F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_n={ SO }_0(n, 1; {\mathbb {F}})$$\end{document} for F=R,C,H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}={\mathbb {R}}, {\mathbb {C}}, {\mathbb {H}}$$\end{document}. We prove that there exist finitely many discrete components in its restriction under the subgroup Hn-1=SO0(n-1,1;F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{n-1}={ SO }_0(n-1, 1; {\mathbb {F}})$$\end{document}. This is proved by imbedding the complementary series into analytic continuation of holomorphic discrete series of Gn=SU(n,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n=SU(n, 1)$$\end{document}, SU(n,1)×SU(n,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SU(n, 1)\times SU(n, 1)$$\end{document} and SU(2n, 2) and by the branching of holomorphic representations under the corresponding subgroup Gn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{n-1}$$\end{document}.
引用
收藏
页码:629 / 647
页数:18
相关论文
共 33 条
  • [1] Bergeron N(2003)Lefschetz properties for arithmetic real and complex hyperbolic manifolds Int. Math. Res. Not. 20 1089-1122
  • [2] Burger M(1991)Ramanujan duals. II Invent. Math. 106 1-11
  • [3] Sarnak P(1998)An approach to symmetric spaces of rank one via groups of Heisenberg type J. Geom. Anal. 8 199-237
  • [4] Cowling M(2000)A new kind of Hankel type operators connected with the complementary series Arab. J. Math. Sci. 6 49-80
  • [5] Dooley A(1990)Function spaces and reproducing kernels on bounded symmetric domains J. Funct. Anal. 88 64-89
  • [6] Korányi A(1979)Restriction and expansions of holomorphic representations J. Funct. Anal. 34 29-53
  • [7] Ricci F(1976)Composition series and intertwining operators for the spherical principal series II. Trans. Am. Math. Soc. 215 269-283
  • [8] Engliš M(1977)Composition series and intertwining operators for the spherical principal series I. Trans. Am. Math. Soc. 229 137-173
  • [9] Hille SC(1969)On the existence and irreducibility of certain series of representations Bull. Am. Math. Soc. 75 627-642
  • [10] Peetre J(1968)Unitary representations of the Lorentz groups: reduction of the supplementary series under a noncompact subgroup J. Math. Phys. 9 417-431