Electrospun submicron bioactive glass fibers for bone tissue scaffold

被引:0
|
作者
H. Lu
T. Zhang
X. P. Wang
Q. F. Fang
机构
[1] Institute of Solid State Physics,Key Laboratory of Materials Physics
[2] Chinese Academy of Sciences,undefined
来源
Journal of Materials Science: Materials in Medicine | 2009年 / 20卷
关键词
Bioactive Glass; Bone Tissue Engineering; Electrospun Fiber; Bone Scaffold; Fibrous Scaffold;
D O I
暂无
中图分类号
学科分类号
摘要
Submicron bioactive glass fibers 70S30C (70 mol% SiO2, 30 mol% CaO) acting as bone tissue scaffolds were fabricated by electrospinning method. The scaffold is a hierarchical pore network that consists of interconnected fibers with macropores and mesopores. The structure, morphological characterization and mechanical properties of the submicron bioactive glass fibers were studied by XRD, EDS, FIIR, SEM, N2 gas absorption analyses and nanoindentation. The effect of the voltage on the morphology of electrospun bioactive glass fibers was investigated. It was found that decreasing the applied voltage from 19 to 7 kV can facilitate the formation of finer fibers with fewer bead defects. The hardness and Young’s modulus of submicron bioactive glass fibers were measured as 0.21 and 5.5 GPa, respectively. Comparing with other bone tissue scaffolds measured by nanoindentation, the elastic modulus of the present scaffold was relatively high and close to the bone.
引用
收藏
页码:793 / 798
页数:5
相关论文
共 50 条
  • [1] Electrospun submicron bioactive glass fibers for bone tissue scaffold
    Lu, H.
    Zhang, T.
    Wang, X. P.
    Fang, Q. F.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2009, 20 (03) : 793 - 798
  • [2] Submicron bioactive glass tubes for bone tissue engineering
    Xie, Jingwei
    Blough, Eric R.
    Wang, Chi-Hwa
    ACTA BIOMATERIALIA, 2012, 8 (02) : 811 - 819
  • [3] Bioactive borate glass scaffold for bone tissue engineering
    Liang, Wen
    Rahaman, Mohamed N.
    Day, Delbert E.
    Marion, Nicholas W.
    Riley, Gwendolen C.
    Mao, Jeremy J.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2008, 354 (15-16) : 1690 - 1696
  • [4] Preparation of a biomimetic composite scaffold from gelatin/collagen and bioactive glass fibers for bone tissue engineering
    Sharifi, Esmaeel
    Azami, Mahmoud
    Kajbafzadeh, Abdol-Mohammad
    Moztarzadeh, Fatollah
    Faridi-Majidi, Reza
    Shamousi, Atefeh
    Karimi, Roya
    Ai, Jafar
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 59 : 533 - 541
  • [5] Electrospun fibers of poly (lactic acid) containing bioactive glass and magnesium oxide nanoparticles for bone tissue regeneration
    Canales, Daniel A.
    Reyes, Felipe
    Saavedra, Marcela
    Peponi, Laura
    Leones, Adrian
    Palza, Humberto
    Boccaccini, Aldo R.
    Gruenewald, Alina
    Zapata, Paula A.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 210 : 324 - 336
  • [6] Electrospun polycaprolactone/gelatin/bioactive glass nanoscaffold for bone tissue engineering
    Shirani, Keyvan
    Nourbakhsh, Mohammad Sadegh
    Rafienia, Mohammad
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2019, 68 (10) : 607 - 615
  • [7] Electrospun nano-fibrous bilayer scaffold prepared from polycaprolactone/gelatin and bioactive glass for bone tissue engineering
    Elkhouly, Hend
    Mamdouh, Wael
    El-Korashy, Dalia, I
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2021, 32 (09)
  • [8] Electrospun nano-fibrous bilayer scaffold prepared from polycaprolactone/gelatin and bioactive glass for bone tissue engineering
    Hend Elkhouly
    Wael Mamdouh
    Dalia I. El-Korashy
    Journal of Materials Science: Materials in Medicine, 2021, 32
  • [9] Poly(ε-caprolactone)/bioactive glass composite electrospun fibers for tissue engineering applications
    Piatti, Elisa
    Miola, Marta
    Liverani, Liliana
    Verne, Enrica
    Boccaccini, Aldo R.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2023, 111 (11) : 1692 - 1709
  • [10] Biodegradable and bioactive properties of a novel bone scaffold coated with nanocrystalline bioactive glass for bone tissue engineering
    Emadi, R.
    Tavangarian, F.
    Esfahani, S. I. Roohani
    MATERIALS LETTERS, 2010, 64 (13) : 1528 - 1531