On the Use of the Riesz Transforms to Determine the Pressure Term in the Incompressible Navier-Stokes Equations on the Whole Space

被引:0
作者
Borys Álvarez-Samaniego
Wilson P. Álvarez-Samaniego
Pedro Gabriel Fernández-Dalgo
机构
[1] Universidad Central del Ecuador (UCE),Núcleo de Investigadores Científicos, Facultad de Ciencias
[2] Université d’Evry Val d’Essonne,LaMME
[3] CNRS,undefined
[4] Université Paris-Saclay,undefined
来源
Acta Applicandae Mathematicae | 2021年 / 176卷
关键词
Navier-Stokes equations; Pressure term; Riesz transforms; Weighted spaces; 35Q30; 76D05;
D O I
暂无
中图分类号
学科分类号
摘要
We give some conditions under which the pressure term in the incompressible Navier-Stokes equations on the entire d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d$\end{document}-dimensional Euclidean space is determined by the formula ∇p=∇(∑i,j=1dRiRj(uiuj−Fi,j))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nabla p = \nabla \left (\sum _{i,j=1}^{d} \mathcal{R}_{i} \mathcal{R}_{j} (u_{i} u_{j} - F_{i,j}) \right )$\end{document}, where d∈{2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d \in \{2, 3\}$\end{document}, u:=(u1,…,ud)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\textbf{u}} := (u_{1}, \ldots ,u_{d})$\end{document} is the fluid velocity, F:=(Fi,j)1≤i,j≤d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}:= (F_{i,j})_{1\le i,j\le d}$\end{document} is the forcing tensor, and for all k∈{1,…,d}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k \in \{1, \ldots , d\}$\end{document}, Rk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{R}_{k}$\end{document} is the k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k$\end{document}-th Riesz transform.
引用
收藏
相关论文
共 4 条
  • [1] Fernández-Dalgo P.G.(2020)Weak solutions for Navier–Stokes equations with initial data in weighted Arch. Ration. Mech. Anal. 63 193-248
  • [2] Lemarié–Rieusset P.G.(1934) spaces Acta Math. 22 305-338
  • [3] Leray J.(2017)Sur le mouvement d’un liquide visqueux emplissant l’espace Adv. Differ. Equ. undefined undefined-undefined
  • [4] Wolf J.(undefined)On the local pressure of the Navier-Stokes equations and related systems undefined undefined undefined-undefined