Quintic rings over Dedekind domains and their sextic resolvents

被引:0
作者
Evan M. O’Dorney
机构
[1] University of Notre Dame,
来源
Research in Number Theory | 2022年 / 8卷
关键词
Quintic ring; Dedekind domain; Resolvent; Higher composition laws; 13F05; 13B02 (Primary); 11E76; 11R21 (Secondary);
D O I
暂无
中图分类号
学科分类号
摘要
Bhargava parametrized quintic rings over Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}$$\end{document} by quadruples of 5×5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5\times 5$$\end{document} alternating matrices. We extend the construction to work similarly over any Dedekind domain R. No assumptions are needed on the characteristic of R. The resolvent consists of a pair of locally free modules L, M with two multilinear maps between them; we can view L as Q/R, for Q the quintic ring, and M as S/R, where S is a sextic resolvent ring. As in Bhargava’s treatment, any quintic ring has a resolvent ring, and for a maximal ring, the resolvent is unique. We hope that this work will enable the removal of the condition that the characteristic be different from 2 in Bhargava-Shankar-Wang’s proof of Linnik’s conjecture on the asymptotic distribution of discriminants of relative extensions.
引用
收藏
相关论文
共 17 条
[1]  
Bhargava M(2004)Higher composition laws. I. A new view on Gauss composition, and quadratic generalizations Ann. Math. (2) 159 217-250
[2]  
Bhargava M(2004)Higher composition laws. II. On cubic analogues of Gauss composition Ann. Math. (2) 159 865-886
[3]  
Bhargava M(2004)Higher composition laws. III. The parametrization of quartic rings Ann. Math. (2) 159 1329-1360
[4]  
Bhargava M(2005)The density of discriminants of quartic rings and fields Ann. Math. (2) 162 1031-1063
[5]  
Bhargava M(2008)Higher composition laws. IV. The parametrization of quintic rings Ann. Math. (2) 167 53-94
[6]  
Bhargava M(2010)The density of discriminants of quintic rings and fields Ann. Math. (2) 172 1559-1591
[7]  
Dummit EP(2018)Counting Math. Res. Lett. 25 1151-1172
[8]  
Ellenberg JS(2006)-extensions by discriminant Ann. Math. (2) 163 723-741
[9]  
Venkatesh A(2002)The number of extensions of a number field with fixed degree and bounded discriminant Duke Math. J. 115 105-169
[10]  
Gan WT(1914)Fourier coefficients of modular forms on Leipz. Ber. 66 26-37