On approximation of signals belonging to some classes by (N,pm,qm)(E,θ)(E,θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(N,p_m,q_m)(E,\theta )(E,\theta )$$\end{document} means of conjugate series of its Fourier series

被引:0
作者
Smita Sonker
Rozy Jindal
机构
[1] National Institute of Technology Kurukshetra,Department of Mathematics
关键词
Signal approximation; Hölder’s inequality; Generalized Lipschitz ; Euler summability; Fourier series; Conjugate Fourier series; 41A25; 42B05; 42B08; 40G05;
D O I
10.1007/s41478-022-00455-5
中图分类号
学科分类号
摘要
In the present study, we approximate the conjugate of the function h denoted by h¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{h}$$\end{document} by a more generalized (N,pm,qm)(E,θ)(E,θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(N,p_m,q_m)(E,\theta )(E,\theta )$$\end{document} means. Various researchers have studied the degree of approximation in various function spaces such as Lip(α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}), Lip(α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document}, r) and Lip(ξ(t),r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi (t),r$$\end{document}), etc. by using product means (C, 2)(E, 1), (E, 1)(C, 1), (E, q) and (N,pn,qn)(E,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(N, p_n, q_n)(E, q)$$\end{document}. Also, they have studied double Euler summability & Nörlund-Euler summability of Fourier and its conjugate series in order to obtain the approximation of functions belonging to different classes. Fourier approximation is a field of great practical significance. Since, the product summability means are stronger than the individual summability means and can be used for approximation for the broader class of functions than by the individual methods. In this way, the system’s stability can be improved by finding the conditions for approximating functions. The established theorem extends, generalizes, and improves various existing results on approximation theory. Also, the result motivates the researcher interested to work with product summability means.
引用
收藏
页码:501 / 518
页数:17
相关论文
共 36 条
[1]  
Borwein D(1958)On product of sequences Journal of the London Mathematical Society 33 352-357
[2]  
Jadiya BL(1982)On Nörlund summability of conjugate Fourier series Indian Journal of Pure and Applied Mathematics. 13 1354-1359
[3]  
Pandey GS(1977)On Nörlund summability of Fourier series Indian Journal of Pure and Applied Mathematics. 8 412-417
[4]  
McFadden L(1942)Absolute Nörlund summability Duke Mathematical Journal 9 168-207
[5]  
Singh AN(1990)Nörlund summability of Fourier series and its conjugate series Bulletin of the Calcutta Mathematical Society 82 99-105
[6]  
Khare SP(1990)Generalized Nörlund summability of Fourier series and its conjugate series Indian Journal of Pure and Applied Mathematics. 21 457-467
[7]  
Singh UN(1995)Almost Nörlund summability of Fourier series and its conjugate series Bulletin of the Calcutta Mathematical Society 87 57-62
[8]  
Singh VS(1990)Matrix summability of Fourier series and its conjugate series Bulletin of the Calcutta Mathematical Society 82 362-368
[9]  
Mittal ML(2013)On the degree of approximation of a function by International Journal of Analysis and Applications. 1 33-39
[10]  
Kumar R(2014) means of its Fourier-Laguerre series Proceeding of ICMS-2014 1 125-128