Robust clustering of functional directional data

被引:0
作者
Pedro C. Álvarez-Esteban
Luis A. García-Escudero
机构
[1] IMUVA,Dpto. de Estadística e Investigación Operativa
[2] Universidad de Valladolid,undefined
来源
Advances in Data Analysis and Classification | 2022年 / 16卷
关键词
Cluster analysis; Robustness; Functional data analysis; Directional data; Warping; 62H30; 62H11; 62G35;
D O I
暂无
中图分类号
学科分类号
摘要
A robust approach for clustering functional directional data is proposed. The proposal adapts “impartial trimming” techniques to this particular framework. Impartial trimming uses the dataset itself to tell us which appears to be the most outlying curves. A feasible algorithm is proposed for its practical implementation justified by some theoretical properties. A “warping” approach is also introduced which allows including controlled time warping in that robust clustering procedure to detect typical “templates”. The proposed methodology is illustrated in a real data analysis problem where it is applied to cluster aircraft trajectories.
引用
收藏
页码:181 / 199
页数:18
相关论文
共 39 条
  • [1] Cuesta-Albertos JA(2007)Impartial trimmed Comput Stat Data Anal 51 4864-4877
  • [2] Fraiman R(1997)-means for functional data Ann Stat 25 553-576
  • [3] Cuesta-Albertos JA(2008)Trimmed Ann Stat 36 1324-1345
  • [4] Gordaliza A(2010)-means: an attempt to robustify quantizers Adv Data Anal Classif 4 89-109
  • [5] Matrán C(1999)A general trimming approach to robust cluster analysis J Am Stat Assoc 94 956-969
  • [6] García-Escudero L(2005)A review of robust clustering methods J Classif 22 185-201
  • [7] Gordaliza A(2003)Robustness properties of J Comput Gr Stat 12 434-449
  • [8] Matrán C(2009) means and trimmed J Stat Softw 31 1-24
  • [9] Mayo-Iscar A(1991) means J Approx Theor 64 162-180
  • [10] García-Escudero L(2014)A proposal for robust curve clustering Adv Data Anal Classif 8 231-255