Upper bounds for the numerical radius of Hilbert space operators

被引:0
作者
Akram Mansoori
Mohsen Erfanian Omidvar
Khalid Shebrawi
机构
[1] Islamic Azad University,Department of Mathematics, Mashhad Branch
[2] Al-Balqa Applied University,Department of Mathematics
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2021年 / 70卷
关键词
Numerical radius; Norm inequality; Spectral radius; Primary 47A12; 47A30; Secondary 47B15;
D O I
暂无
中图分类号
学科分类号
摘要
New upper bounds for the numerical radius of Hilbert space operators are given. Moreover, we give some applications of our result in estimation of spectral radius. We also compare our results with some known results.
引用
收藏
页码:1473 / 1481
页数:8
相关论文
共 14 条
[1]  
Dragomir SS(2008)Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces Tamkang J. Math. 39 1-7
[2]  
El-Haddad M(2007)Numerical radius inequalities for Hilbert space operators II Studia Math. 182 133-140
[3]  
Kittaneh F(2014)Operator Jensen inequality for superquadratic functions Linear Algebra Appl. 456 82-87
[4]  
Kian M(2003)A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix Studia Math. 158 11-17
[5]  
Kittaneh F(1988)Notes on some inequalities for Hilbert space operators Publ. Res. Inst. Math. Sci. 24 283-293
[6]  
Kittaneh F(2005)Numerical radius inequalities for Hilbert space operators Studia Math. 168 73-80
[7]  
Kittaneh F(2014)Numerical radius inequalities for finite sums of operators Demonstr. Math. 47 963-970
[8]  
Mirmostafaee AK(2009)Numerical radius and operator norm inequalities J. Inequal. Appl. 492154 11-286
[9]  
Rahpeyma OP(1971)Some inequalities for complex numbers Math. Balkanica 1 282-undefined
[10]  
Omidvar ME(undefined)undefined undefined undefined undefined-undefined