On Maximal Operators Associated with Singular Hypersurfaces

被引:1
作者
Usmanov, S. E. [1 ]
机构
[1] Sh Rashidov Samarkand State Univ, Samarkand 140104, Uzbekistan
关键词
maximal operator; averaging operator; fractional power series; boundedness exponent; singular hypersurface; AVERAGES; BOUNDEDNESS;
D O I
10.3103/S1066369X24700051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Maximal operators associated with singular hypersurfaces in multidimensional Euclidean spaces are considered. These operators have been proven to be bounded, and an exponent of boundedness in the space of integrable functions has been found for the case when hypersurfaces are given by parametric equations.
引用
收藏
页码:61 / 68
页数:8
相关论文
共 14 条
[1]   AVERAGES IN THE PLANE OVER CONVEX CURVES AND MAXIMAL OPERATORS [J].
BOURGAIN, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1986, 47 :69-85
[2]  
Bryuno A. D., 2000, Power Geometry in Algebraic and Differential Equations, DOI [10.1016/s0924-6509(00)x8015-4, DOI 10.1016/S0924-6509(00)X8015-4]
[3]   A MULTI-DIMENSIONAL RESOLUTION OF SINGULARITIES WITH APPLICATIONS TO ANALYSIS [J].
Collins, Tristan C. ;
Greenleaf, Allan ;
Pramanik, Malabika .
AMERICAN JOURNAL OF MATHEMATICS, 2013, 135 (05) :1179-1252
[4]  
Dubrovin B. A., 1984, Modern Geometry-Methods and Applications, DOI [10.1007/978-1-4684-9946-9, DOI 10.1007/978-1-4684-9946-9]
[5]   PRINCIPAL CURVATURE AND HARMONIC-ANALYSIS [J].
GREENLEAF, A .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (04) :519-537
[6]  
Ikromov I. A., 2022, J. Math. Sci, V264, P715
[7]   Estimates for maximal functions associated with hypersurfaces in R3 and related problems of harmonic analysis [J].
Ikromov, Isroil A. ;
Kempe, Michael ;
Mueller, Detlef .
ACTA MATHEMATICA, 2010, 204 (02) :151-271
[8]   Maximal averages over surfaces [J].
Iosevich, A ;
Sawyer, E .
ADVANCES IN MATHEMATICS, 1997, 132 (01) :46-119
[9]   On averaging operators associated with convex hypersurfaces of finite type [J].
Iosevich, A ;
Sawyer, E ;
Seeger, A .
JOURNAL D ANALYSE MATHEMATIQUE, 1999, 79 (1) :159-187
[10]  
Sogge C. D., 2018, Fourier Analysis and Partial Differential Equations, DOI [10.1201/9781351072137, DOI 10.1201/9781351072137]