Beyond Jarlskog: 699 invariants for CP violation in SMEFT

被引:0
作者
Quentin Bonnefoy
Emanuele Gendy
Christophe Grojean
Joshua T. Ruderman
机构
[1] Deutsches Elektronen-Synchrotron DESY,Institute of Theoretical Physics
[2] Universität Hamburg,Institut für Physik
[3] Humboldt-Universität zu Berlin,Center for Cosmology and Particle Physics, Department of Physics
[4] New York University,undefined
来源
Journal of High Energy Physics | / 2022卷
关键词
CP Violation; SMEFT; Flavour Symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
As SMEFT is a framework of growing importance to analyze high-energy data, understanding its parameter space is crucial. The latter is commonly split into CP-even and CP-odd parts, but this classification is obscured by the fact that CP violation is actually a collective effect that is best captured by considering flavor-invariant combinations of Lagrangian parameters. First we show that fermion rephasing invariance imposes that several coefficients associated to dimension-six operators can never interfere with operators of dimension ≤ 4 and thus cannot appear in any physical observable at O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}1/Λ2. For those that can, instead, we establish a one-to-one correspondence with CP-odd flavor invariants, all linear with respect to SMEFT coefficients. We explicitly present complete lists of such linear CP-odd invariants, and carefully examine their relationship to CP breaking throughout the parameter space of coefficients of dimension ≤ 4. Requiring that these invariants all vanish, together with the Jarlskog invariant, the strong-CP phase, and the 6 CP-violating dimension-6 bosonic operators, provides 699(+1 + 1 + 6) conditions for CP conservation to hold in any observable at leading order, O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(1/Λ2).
引用
收藏
相关论文
共 49 条
[1]  
Trautner A(2019) 2 JHEP 05 208-undefined
[2]  
Bento MP(2021)8 JHEP 05 146-undefined
[3]  
Jenkins EE(2009)′ JHEP 10 094-undefined
[4]  
Manohar AV(2021)′ JHEP 09 053-undefined
[5]  
Wang Y(2021)′ JHEP 10 017-undefined
[6]  
Yu B(2021) = 1 JHEP 07 203-undefined
[7]  
Zhou S(2010) = 4 JHEP 10 085-undefined
[8]  
Yu B(2020)undefined JHEP 10 174-undefined
[9]  
Zhou S(2013)undefined JHEP 11 180-undefined
[10]  
Valenti A(2019)undefined JHEP 04 090-undefined