Sobolev inequalities for Musielak–Orlicz spaces

被引:0
作者
Yoshihiro Mizuta
Takao Ohno
Tetsu Shimomura
机构
[1] Oita University,Faculty of Education
[2] Hiroshima University,Department of Mathematics, Graduate School of Education
来源
manuscripta mathematica | 2018年 / 155卷
关键词
46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Our aim in this paper is to deal with Sobolev’s embeddings for Musielak–Orlicz–Sobolev functions in W01,Φ(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,\Phi }_0(\Omega )$$\end{document} for Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^N$$\end{document}, as extensions of Harjulehto and Hästö (Publ Mat 52:347–363, 2008), Hästö (Math Res Lett 16(2):263–278, 2009) and Hästö et al. (Glasg Math J 52:227–240, 2010). Here Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} is a function such that ϕ(x,t)=t-1Φ(x,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (x,t)=t^{-1} \Phi (x,t)$$\end{document} is uniformly almost increasing positive function of t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t > 0$$\end{document}.
引用
收藏
页码:209 / 227
页数:18
相关论文
共 46 条
  • [1] Almeida A(2015)Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces Ann. Mat. Pura Appl. (4) 194 405-424
  • [2] Harjulehto P(2007)Pointwise inequalities in variable Sobolev spaces and applications Z. Anal. Anwend. 26 179-193
  • [3] Hästö P(2007)The fractional maximal operators on variable Rev. Mat. Iberoam. 23 743-770
  • [4] Lukkari T(2006) spaces Int. Math. Forum 1 1313-1323
  • [5] Almeida A(2009)On the Sobolev-type inequality for Lebesgue spaces with a variable exponent Trans. Am. Math. Soc. 361 2631-2647
  • [6] Samko S(2004) results for the maximal operator in variable Math. Nachr. 263 31-43
  • [7] Capone C(2000) spaces Stud. Math. 143 267-293
  • [8] Cruz-Uribe D(2002)Riesz potential and Sobolev embeddings of generalized Lebesgue and Sobolev spaces Math. Nachr. 246 53-67
  • [9] Fiorenza A(2006) and Ann. Acad. Sci. Fenn. Math. 31 495-522
  • [10] Çekiç B(2007)Sobolev embeddings with variable exponent Math. Bohem. 132 125-136