Lacunary Arithmetic Statistical Convergence

被引:0
作者
Taja Yaying
Bipan Hazarika
机构
[1] Dera Natung Govt. College,Department of Mathematics
[2] Rajiv Gandhi University,Department of Mathematics
[3] Gauhati University,Department of Mathematics
来源
National Academy Science Letters | 2020年 / 43卷
关键词
Lacunary sequence; Statistical convergence; Arithmetic convergence; 40A05; 40A99; 46A70; 46A99;
D O I
暂无
中图分类号
学科分类号
摘要
A lacunary sequence is an increasing integer sequence θ=(kr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta =(k_r)$$\end{document} such that kr-kr-1→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_r-k_{r-1}\rightarrow \infty$$\end{document} as r→∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\rightarrow \infty .$$\end{document} In this article, we introduce arithmetic statistically convergent sequence space ASC and lacunary arithmetic statistically convergent sequence space ASCθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ASC_{\theta }$$\end{document} and study some inclusion properties between the two spaces. Finally, we introduce lacunary arithmetic statistical continuity and establish some interesting results.
引用
收藏
页码:547 / 551
页数:4
相关论文
共 25 条
  • [1] Ruckle WH(2012)Arithmetical summability J Math Anal Appl 396 741-748
  • [2] Yaying T(2017)On arithmetical summability and multiplier sequences Natl Acad Sci Lett 40 43-46
  • [3] Hazarika B(2017)On arithmetic continuity Bol Soc Parana Mater 35 139-145
  • [4] Yaying T(2016)New results in quasi cone metric spaces J Math Comput Sci 16 435-444
  • [5] Hazarika B(2017)On arithmetic continuity in metric spaces Afr Mater 28 985-989
  • [6] Yaying T(1978)Some Cesàro-type summability spaces Proc Lond Math Soc 37 508-520
  • [7] Hazarika B(2003)Lacunary strong convergence of difference sequences with respect to a modulus function Filomat 17 9-14
  • [8] Çakalli H(1993)Lacunary statistical summability J Math Anal Appl 173 497-504
  • [9] Yaying T(1993)Lacunary statistical convergence Pac J Math 160 43-51
  • [10] Hazarika B(2000)Lacunary statistical convergence and inclusion properties between lacunary methods Int J Math Math Sci 23 175-180