Prognostic gene signatures for patient stratification in breast cancer - accuracy, stability and interpretability of gene selection approaches using prior knowledge on protein-protein interactions

被引:0
作者
Yupeng Cun
Holger Fröhlich
机构
[1] Algorithmic Bioinformatics,
[2] Bonn-Aachen International Center for IT,undefined
来源
BMC Bioinformatics | / 13卷
关键词
Support Vector Machine; Prediction Performance; Gene Selection; Feature Selection Method; KEGG Pathway;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 287 条
[1]  
Tibshirani R(1996)Regression shrinkage and selection via the lasso J Roy Stat Soc B Met 58 267-288
[2]  
Tibshirani R(2002)Diagnosis of multiple cancer types by shrunken centroids of gene expression Proc Natl Acad Sci U S A 99 6567-6572
[3]  
Hastie T(2002)Gene Selection for Cancer Classification using Support Vector Machines Mach. Learn 46 389-422
[4]  
Narasimhan B(2001)Random Forests Mach Learn 45 5-32
[5]  
Chu G(2004)A Feature Selection Newton Method for Support Vector Machine Classification Comput Optim Appl 28 185-202
[6]  
Guyon I(2006)Gene selection using support vector machines with non-convex penalty Bioinformatics 22 88-95
[7]  
Weston J(2008)Hybrid huberized support vector machines for microarray classification and gene selection Bioinformatics 24 412-419
[8]  
Barnhill S(2005)Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21 171-178
[9]  
Vapnik V(2011)Do two machine-learning based prognostic signatures for breast cancer capture the same biological processes? PLoS One 6 e17795-204
[10]  
Breiman L(2007)Network-based classification of breast cancer metastasis Mol Syst Biol 3 140-2144