Infrared absorption spectra of CO2, C2H4, C2H6 in nanopores of SiO2/Al2O3 aerogel

被引:3
作者
Petrova T.M. [1 ]
Ponomarev Y.N. [1 ]
Solodov A.A. [1 ]
Solodov A.M. [1 ]
Glazkova E.A. [2 ,3 ]
Bakina O.V. [2 ,3 ]
Lerner M.I. [2 ,3 ]
机构
[1] V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, pl. Akademika Zueva 1, Tomsk
[2] Institute of Strength Physics and Materials Science, pr. Akademicheskii 2/1, Tomsk
[3] National Research Tomsk Polytechnic University, pr. Lenina 30, Tomsk
关键词
absorption spectra; aerogel; C[!sub]2[!/sub]H[!sub]4[!/sub; C[!sub]2[!/sub]H[!sub]6[!/sub; CO[!sub]2[!/sub; nanopores;
D O I
10.1134/S1024856016050122
中图分类号
学科分类号
摘要
Transformation of C2H4, CO2 and C2H6 absorption spectra confined in nanopores of SiO2/Al2O3 aerogel is studied for the first time in comparison with the spectra of these molecules in the free state. It is shown that the integral intensities of confined C2H4 within 5700–6250 cm–1, CO2 within 4760–5160 cm–1, and C2H6 within 2830–3030 cm–1 are higher by 13.3, 15, and 18 times, respectively, than those of free gases. © 2016, Pleiades Publishing, Ltd.
引用
收藏
页码:404 / 409
页数:5
相关论文
共 24 条
[1]  
Solodov A.A., Petrova T.M., Ponomarev Y.N., Solodov A.M., Influence of nanoconfinement on the rotational dependence of line half-widths for 2–0 band of carbon oxide, Chem. Phys. Lett., 637, pp. 18-21, (2015)
[2]  
Ponomarev Y.N., Petrova T.M., Solodov A.M., Solodov A.A., IR spectroscopy of water vapor confined in nanoporous silica aerogel, Opt. Express, 18, 25, pp. 26062-26067, (2010)
[3]  
Ponomarev Y.N., Petrova T.M., Solodov A.M., Solodov A.A., Danilyuk A.F., Experimental study by the IR spectroscopy method of the interaction between ethylene and nanopores of various densities, Atmos. Ocean. Opt., 23, 4, pp. 266-269, (2010)
[4]  
Huber T.E., Huber C.A., Infrared absorption of H<sub>2</sub> adsorbed on porous glass, silica gel, and MgO, Appl. Phys., A., 51, 2, pp. 137-140, (1990)
[5]  
Reta N., Michelmore A., Saint C., Voelcer N.H., Porous silicon membrane-modified electrodes for label-free voltammetric detection of MS2 bacteriophage, Biosens. Bioelectron., 80, 15, pp. 47-53, (2016)
[6]  
Laborda F., Bolea E., Cepria G., Jimenez M.S., Perez-Arantegui J., Castillo J.R., Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples, Anal. Chim. Acta, 904, pp. 10-32, (2016)
[7]  
Zhuang X., Mai Y., Wu D., Zhang F., Feng X., Two dimensional soft nanomaterials: A fascinating world of materials, Adv. Mater., 27, 3, pp. 403-427, (2015)
[8]  
Banerjee S., Kelly C., Kerry J.P., Papkovsky D.B., High throughput non-destructive assessment of quality and safety of packaged food products using phosphorescent oxygen sensors, Trends Food Sci. Technol., 50, pp. 85-102, (2016)
[9]  
Chatteriee S.G., Chatteriee S., Ray A.K., Chakraborty A.K., Graphene-metal oxide nanohybrids for toxic gas sensor: A review, Sens. Actuators, B, 221, pp. 1170-1181, (2015)
[10]  
Hu J., Gao F., Zhao Z., Sang S., Li P., Zhang W., Zhou X., Chen Y., Synthesis and characterization of cobalt-doped ZnO microstructures for methane gas sensing, Appl. Surf. Sci., 363, pp. 181-188, (2016)