On the universality of inertial energy in the log layer of turbulent boundary layer and pipe flows

被引:0
作者
D. Chung
I. Marusic
J. P. Monty
M. Vallikivi
A. J. Smits
机构
[1] University of Melbourne,Department of Mechanical Engineering
[2] Princeton University,Department of Mechanical and Aerospace Engineering
[3] Monash University,Department of Mechanical and Aerospace Engineering
来源
Experiments in Fluids | 2015年 / 56卷
关键词
Turbulent Boundary Layer; High Reynolds Number; Pipe Flow; Wall Distance; Turbulent Pipe Flow;
D O I
暂无
中图分类号
学科分类号
摘要
Recent experiments in high Reynolds number pipe flow have shown the apparent obfuscation of the kx-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_x^{-1}$$\end{document} behaviour in spectra of streamwise velocity fluctuations (Rosenberg et al. in J Fluid Mech 731:46–63, 2013). These data are further analysed here from the perspective of the logr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log r$$\end{document} behaviour in second-order structure functions, which have been suggested as a more robust diagnostic to assess scaling behaviour. A detailed comparison between pipe flows and boundary layers at friction Reynolds numbers of Reτ≈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{Re}}_\tau \approx$$\end{document} 5000–20,000 reveals subtle differences. In particular, the logr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log r$$\end{document} slope of the pipe flow structure function decreases with increasing wall distance, departing from the expected 2A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2A_1$$\end{document} slope in a manner that is different to boundary layers. Here, A1≈1.25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_1 \approx 1.25$$\end{document}, the slope of the log law in the streamwise turbulence intensity profile at high Reynolds numbers. Nevertheless, the structure functions for both flows recover the 2A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2A_1$$\end{document} slope in the log layer sufficiently close to the wall, provided the Reynolds number is also high enough to remain in the log layer. This universality is further confirmed in very high Reynolds number data from measurements in the neutrally stratified atmospheric surface layer. A simple model that accounts for the ‘crowding’ effect near the pipe axis is proposed in order to interpret the aforementioned differences.
引用
收藏
相关论文
共 63 条
[1]  
Bailey SCC(2008)Azimuthal structure of turbulence in high Reynolds number pipe flow J Fluid Mech 615 121-138
[2]  
Hultmark M(2006)A refined interpretation of the logarithmic structure function law in wall layer turbulence Phys Fluids 18 112-60
[3]  
Smits AJ(2006)The logarithmic structure function law in wall-layer turbulence J Fluid Mech 550 51-144
[4]  
Schultz MP(2009)A simple model for the streamwise fluctuations in the log-law region of a boundary layer Phys Fluids 21 105-124
[5]  
Davidson PA(2004)Scaling of the energy spectra of turbulent channels J Fluid Mech 500 135-136
[6]  
Krogstad P(2002)Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer Bound Layer Meteorol 103 101-28
[7]  
Nickels TB(2012)Turbulent pipe flow at extreme Reynolds numbers Phys Rev Lett 108 501-93
[8]  
Davidson PA(2009)Hot-wire spatial resolution issues in wall-bounded turbulence J Fluid Mech 635 103-402
[9]  
Nickels TB(2007)Evidence of very long meandering features in the logarithmic region of turbulent boundary layers J Fluid Mech 579 1-442
[10]  
Krogstad P(2009)On the logarithmic mean profile J Fluid Mech 638 73-199