Approximation and Extension of Functions of Vanishing Mean Oscillation

被引:0
|
作者
Almaz Butaev
Galia Dafni
机构
[1] University of Calgary,Department of Mathematics and Statistics
[2] Concordia University,Department of Mathematics and Statistics
来源
The Journal of Geometric Analysis | 2021年 / 31卷
关键词
Bounded mean oscillation; Vanishing mean oscillation; Continuous mean oscillation; Extension theorems; Uniform domains; 42B35; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
We consider various definitions of functions of vanishing mean oscillation on a domain Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {{{\mathbb {R}}}^n}$$\end{document}. If the domain is uniform, we show that there is a single extension operator which extends functions in these spaces to functions in the corresponding spaces on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {R}}}^n}$$\end{document}, and also extends BMO(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{BMO}(\Omega )$$\end{document} to BMO(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{BMO}({{{\mathbb {R}}}^n})$$\end{document}, generalizing the result of Jones. Moreover, this extension maps Lipschitz functions to Lipschitz functions. Conversely, if there is a linear extension map taking Lipschitz functions with compact support in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} to functions in BMO(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{BMO}({{{\mathbb {R}}}^n})$$\end{document}, which is bounded in the BMO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{BMO}$$\end{document} norm, then the domain must be uniform. In connection with these results we investigate the approximation of functions of vanishing mean oscillation by Lipschitz functions on unbounded domains.
引用
收藏
页码:6892 / 6921
页数:29
相关论文
共 50 条