Blow-up Analysis for the ab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{ab}}$$\end{document}-Family of Equations

被引:0
作者
Wenguang Cheng
Ji Lin
机构
[1] Zhejiang Normal University,Department of Physics
[2] Shaoxing University,Department of Mathematics
关键词
-family of equations; Blow-up; Local well-posedness; 35B44; 35G25; 35Q35;
D O I
10.1007/s00021-024-00857-4
中图分类号
学科分类号
摘要
This paper investigates the Cauchy problem for the ab-family of equations with cubic nonlinearities, which contains the integrable modified Camassa–Holm equation (a=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a = \frac{1}{3}$$\end{document}, b=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b = 2$$\end{document}) and the Novikov equation (a=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a = 0$$\end{document}, b=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b = 3$$\end{document}) as two special cases. When 3a+b≠3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3a + b \ne 3$$\end{document}, the ab-family of equations does not possess the H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-norm conservation law. We give the local well-posedness results of this Cauchy problem in Besov spaces and Sobolev spaces. Furthermore, we provide a blow-up criterion, the precise blow-up scenario and a sufficient condition on the initial data for the blow-up of strong solutions to the ab-family of equations. Our blow-up analysis does not rely on the use of the conservation laws.
引用
收藏
相关论文
共 136 条
[1]  
Brandolese L(2014)Local-in-space criteria for blowup in shallow water and dispersive rod equations Commun. Math. Phys. 330 401-414
[2]  
Brandolese L(2014)Blowup issues for a class of nonlinear dispersive wave equations J. Differ. Equ. 256 3981-3998
[3]  
Cortez MF(2014)On permanent and breaking waves in hyperelastic rods and rings J. Funct. Anal. 266 6954-6987
[4]  
Brandolese L(2018)Lipschitz metric for the Novikov equation Arch. Ration. Mech. Anal. 229 1091-1137
[5]  
Cortez MF(1993)An integrable shallow water equation with peaked solitons Phys. Rev. Lett. 71 1661-1664
[6]  
Cai H(2018)Existence and uniqueness of the global conservative weak solutions for the integrable Novikov equation Indiana Univ. Math. J. 67 2393-2433
[7]  
Chen G(2022)Stability of peaked solitary waves for a class of cubic quasilinear shallow-water equations Int. Math. Res. Not. 24 49-533
[8]  
Chen RM(2022)The shallow-water models with cubic nonlinearity J. Math. Fluid Mech. 241 497-251
[9]  
Shen YN(2021)A rigidity property for the Novikov equation and the asymptotic stability of peakons Arch. Ration. Mech. Anal. 272 225-362
[10]  
Camassa R(2015)Oscillation-induced blow-up to the modified Camassa–Holm equation with linear dispersion Adv. Math. 50 321-970