Semi-local units modulo Gauss sums

被引:0
作者
Yoshitaka Hachimori
Humio Ichimura
机构
[1] University of Tokyo,Graduate School of Mathematical Sciences
[2] Yokhama City University,Department of Mathematics
关键词
Prime Ideal; Irreducible Component; Local Unit; Algebraic Number Field; Ideal Class Group;
D O I
10.1007/BF02678038
中图分类号
学科分类号
摘要
For thep-th cyclotomic fieldk, Iwasawa proved thatp does not divide the class number of its maximal real subfield if and only if the odd part of the group of local units coincides with its subgroup generated by Jacobi sums related tok. We refine and give a quantitative version of this result for more general imaginary abelian fields. Our result is an analogy of the famous result on “semi-local units modulo cyclotomic units”.
引用
收藏
页码:377 / 395
页数:18
相关论文
共 22 条
[1]  
Brumer A.(1967)On the units of algebraic number fields Mathematika 14 121-124
[2]  
Coleman R.(1989)Anderson-Ihara Theory: Gauss sums and circular units Adv. Stud. in Pure Math. 17 55-72
[3]  
Federer L. J.(1981)Regulators and Iwasawa modules Invent. Math. 62 443-457
[4]  
Gross B. H.(1979)- Ann. Inst. Fourier 29 1-15
[5]  
Gillard R.(1974)Examples of Iwasawa invariants Acta Arith. 26 21-32
[6]  
Gold R.(1976)On the Iwasawa invariants of totally real number fields Amer. J. Math. 98 263-284
[7]  
Greenberg R.(1989)On the universal power series for Jacobi sums and the Vandiver’s conjecture J. Number Theory 31 312-334
[8]  
Ichimura H.(1996)On the Iwasawa invariants of certain real abelian fields II International J. Math. 7 721-744
[9]  
Kaneko M.(1986)Profinite braid groups, Galois representations, and complex multiplication Ann. of Math. 123 43-106
[10]  
Ichimura H.(1962)A class number formula for cyclotomic fields Ann. of Math. 76 171-179