Actions of Hopf algebras on general quantum Mal'tsev power series and quantum planes

被引:0
作者
Artamonov V.A. [1 ]
机构
[1] Moscow State University,
基金
俄罗斯基础研究基金会;
关键词
Power Series; Hopf Algebra; General Quantum; Quantum Plane; Algebra Action;
D O I
10.1007/s10958-006-0089-7
中图分类号
学科分类号
摘要
A classification of automorphisms, derivations, and Hopf algebra actions of the quantum plane and its completions is presented. © 2006 Springer Science+Business Media, Inc.
引用
收藏
页码:1773 / 1798
页数:25
相关论文
共 20 条
[1]  
Alev J., Chamarie M., Dérivations et automorphismes de quelques algèbres quantiques, Commun. Algebra, 20, 6, pp. 1787-1802, (1992)
[2]  
Alev J., Dumas F., Invariants du corps de Weyl sous l'action de groupes finis, Commun. Algebra, 25, 5, pp. 1655-1672, (1997)
[3]  
Artamonov V.A., Automorphisms of division rings of quantum rational functions, Mat. Sb., 191, 12, pp. 3-26, (2000)
[4]  
Artamonov V.A., Valuations on quantum fields, Commun. Algebra, 29, 9, pp. 3889-3904, (2001)
[5]  
Artamonov V.A., Pointed Hopf algebras acting on quantum polynomials, J. Algebra, 259, 2, pp. 323-352, (2003)
[6]  
Artamonov V.A., Cohn P.M., The skew field of rational functions on the quantum plane, J. Math. Sci., 93, 6, pp. 824-829, (1999)
[7]  
Artamonov V.A., Wisbauer R., Homological properties of quantum polynomials, Algebras Representation Theory, 4, 3, pp. 219-247, (2001)
[8]  
Brookes C.J.B., Crossed products and finitely presented groups, J. Group Theory, 3, pp. 433-444, (2000)
[9]  
Brown K.A., Goodearl K.R., Lectures on Algebraic Quantum Groups, (2002)
[10]  
Demidov E.E., Quantum Groups [in Russian], (1998)