The covering radii of a class of binary cyclic codes and some BCH codes

被引:0
作者
Selçuk Kavut
Seher Tutdere
机构
[1] Balıkesir University,Department of Computer Engineering
[2] Gebze Technical University,Department of Mathematics
来源
Designs, Codes and Cryptography | 2019年 / 87卷
关键词
Cyclic code; BCH code; Covering radius; Finite field; Polynomial equations; 94B15; 94B65;
D O I
暂无
中图分类号
学科分类号
摘要
In 2003, Moreno and Castro proved that the covering radius of a class of primitive cyclic codes over the finite field F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_2$$\end{document} having minimum distance 5 (resp. 7) is 3 (resp. 5). We here give a generalization of this result as follows: the covering radius of a class of primitive cyclic codes over F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_2$$\end{document} with minimum distance greater than or equal to r+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r+2$$\end{document} is r, where r is any odd integer. Moreover, we prove that the primitive binary e-error correcting BCH codes of length 2f-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^f-1$$\end{document} have covering radii 2e-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2e-1$$\end{document} for an improved lower bound of f.
引用
收藏
页码:317 / 325
页数:8
相关论文
共 28 条
[1]  
Cohen DS(1997)The lenght of primitive BCH codes with minimal covering radius Des. Codes Cryptogr. 10 5-16
[2]  
Cohen DG(1985)Covering radius-survey and recent results IEEE Trans. Inf. Theory 31 328-343
[3]  
Karpovsky MG(1997)Covering radius 1985–1994 Appl. Algebra Eng. Commun. Comput. 8 173-239
[4]  
Mattson HF(1973)Four fundamental parameters of a code and their combinatorial significance Inf. Control. 23 407-438
[5]  
Schatz JR(1960)Two-error correcting Bose–Chaudhuri codes are quasi-perfect Inf. Control. 3 291-294
[6]  
Cohen GD(1978)All binary 3-error correcting BCH codes of lenght IEEE Trans. Inf. Theory 24 257-258
[7]  
Litsyn SN(1985) having covering radius Discret. Appl. Math. 11 157-173
[8]  
Lobstein AC(2001)On the covering radius of cyclic linear codes and arithmetic codes Fibonacci Q. 39 358-363
[9]  
Mattson HF(1996)The power of 2 dividing the coefficients of certain power series IEEE Trans. Inf. Theory 42 1023-1028
[10]  
Delsarte P(2003)More on the covering radius of BCH codes IEEE Trans. Inf. Theory 49 3299-3303