Unique strong and V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ \mathbb {V} }$$\end{document}-attractor of a three-dimensional globally modified two-phase flow model

被引:0
作者
T. Tachim Medjo
机构
[1] Florida International University,Department of Mathematics
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2018年 / 197卷 / 3期
关键词
Allen–Cahn–Navier–Stokes; Globally modified; Strong solutions; Global attractor; 35Q30; 35Q35; 35Q72;
D O I
10.1007/s10231-017-0706-8
中图分类号
学科分类号
摘要
In this article, we study a globally modified Allen–Cahn–Navier–Stokes system in a three-dimensional domain. The model consists of the globally modified Navier–Stokes equations proposed in Caraballo et al. (Adv Nonlinear Stud 6(3):411–436, 2006) for the velocity, coupled with an Allen–Cahn model for the order (phase) parameter. We prove the existence and uniqueness of strong solutions. Using the flattening property, we also prove the existence of global V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ \mathbb {V} }$$\end{document}-attractors for the model. Using a limiting argument, we derive the existence of bounded entire weak solutions for the three-dimensional coupled Allen–Cahn–Navier–Stokes system with time-independent forcing.
引用
收藏
页码:843 / 868
页数:25
相关论文
共 81 条
  • [21] Chen S(2007)Pullback Commun. Pure Appl. Anal. 6 937955-210
  • [22] Foias C(2009)-attractors of the 3-dimensional globally modified Navier–Stokes equations Commun. Pure Appl. Anal. 8 785802-undefined
  • [23] Holm DD(2007)Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier–Stokes equations Proc. R. Soc. Lond. Ser. A Math. Phys Eng. Sci. 463 14911508-undefined
  • [24] Olson E(2010)The weak connectedness of the attainability set of weak solutions of the three-dimensional Navier–Stokes equations Int. J. Bifurcat. Chaos Appl. Sci. Eng. 20 26372644-undefined
  • [25] Titi ES(2002)On pullback attractors in Indiana Univ. Math. J. 51 15411559-undefined
  • [26] Wynne S(2011) for nonautonomous reaction-diffusion equations Adv. Nonlinear Stud. 11 917927-undefined
  • [27] Chen S(2010)Necessary and sufficient conditions for the existence of global attractors for semigroups and applications SeMA J. 51 117-undefined
  • [28] Foias C(2001)On the convergence of solutions of globally modified Navier–Stokes equations with delays to solutions of Navier–Stokes equations with delays Phil. Trans. R. Soc. Lond. A 359 1449-undefined
  • [29] Holm DD(1997)Existence and uniqueness of solutions, and pullback attractor for a system of globally modified 3D-Navier–Stokes equations with finite delay J. Phys. Condens. Matter 9 6119-undefined
  • [30] Olson E(2009)Global well-posedness for the Lagrangian averaged Navier–Stokes (LANS- Adv. Nonlinear Stud. 9 425427-undefined