Unique strong and V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ \mathbb {V} }$$\end{document}-attractor of a three-dimensional globally modified two-phase flow model

被引:0
作者
T. Tachim Medjo
机构
[1] Florida International University,Department of Mathematics
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2018年 / 197卷 / 3期
关键词
Allen–Cahn–Navier–Stokes; Globally modified; Strong solutions; Global attractor; 35Q30; 35Q35; 35Q72;
D O I
10.1007/s10231-017-0706-8
中图分类号
学科分类号
摘要
In this article, we study a globally modified Allen–Cahn–Navier–Stokes system in a three-dimensional domain. The model consists of the globally modified Navier–Stokes equations proposed in Caraballo et al. (Adv Nonlinear Stud 6(3):411–436, 2006) for the velocity, coupled with an Allen–Cahn model for the order (phase) parameter. We prove the existence and uniqueness of strong solutions. Using the flattening property, we also prove the existence of global V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ \mathbb {V} }$$\end{document}-attractors for the model. Using a limiting argument, we derive the existence of bounded entire weak solutions for the three-dimensional coupled Allen–Cahn–Navier–Stokes system with time-independent forcing.
引用
收藏
页码:843 / 868
页数:25
相关论文
共 81 条
  • [1] Abels H(2009)On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities Arch. Ration. Mech. Anal. 194 463-506
  • [2] Blesgen T(1999)A generalization of the Navier–Stokes equation to two-phase flow Phys. D Appl. Phys. 32 1119-1123
  • [3] Caginalp G(1986)An analysis of a phase field model of a free boundary Arch. Ration. Mech. Anal. 92 205-245
  • [4] Caraballo T(2008)Invariant measures and statistical solutions of the globally modified Navier–Stokes equations Discrete Continuous Dyn. Syst. Ser. B 10 761-781
  • [5] Kloeden PE(2001)Navier–Stokes equations with delays R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 2441-2453
  • [6] Real J(2006)Unique strong solutions and V-attractors of a three dimensional system of globally modified Navier–Stokes equations Adv. Nonlinear Stud. 6 411-436
  • [7] Caraballo T(2010)Three-dimensional system of globally modified Navier–Stokes equations with delay Int. J. Bifurcat. Chaos Appl. Sci. Eng. 20 2869-2883
  • [8] Real J(1998)The Camassa–Holm equations as a closure model for turbulent channel and pipe flows Phys. Rev. Lett. 81 5338-5341
  • [9] Caraballo T(1999)The Camassa–Holm equations and turbulence Phys. D 133 49-65
  • [10] Real J(1999)A connection between the Camassa–Holm equations and turbulent flows in channels and pipes Phys. Fluids 11 2343-2353