Exact multiplicity results for a singularly perturbed Neumann problem

被引:0
作者
Massimo Grossi
Sérgio L. N. Neves
机构
[1] Università di Roma “La Sapienza”,Dipartimento di Matematica
[2] Universidade,Departamento de Matemática
[3] Estadual de Campinas,undefined
[4] IMECC,undefined
来源
Calculus of Variations and Partial Differential Equations | 2013年 / 48卷
关键词
35J152;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the number of the boundary single peak solutions of the problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{ll} -\varepsilon^{2} \Delta u + u = u^{p}, \quad {\rm in}\, \Omega \\ u > 0, \quad\quad\quad\quad\quad\quad {\rm in}\, \Omega \\ \frac{\partial u}{\partial {\nu}} = 0, \quad\quad\quad\quad\quad\,\,\, {\rm on}\, \partial {\Omega}\end{array}\right.$$\end{document}for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon}$$\end{document} small and p subcritical. Under some suitable assumptions on the shape of the boundary near a critical point of the mean curvature, we are able to prove exact multiplicity results. Note that the degeneracy of the critical point is allowed.
引用
收藏
页码:713 / 737
页数:24
相关论文
共 26 条
  • [1] Azorero J.G.(2010)Concentration of solutions for some singularly perturbed mixed problems: existence results Arch. Ration. Mech. Anal. 196 907-950
  • [2] Malchiodi A.(1983)Nonlinear scalar field equations I and II Arch. Ration. Mech. Anal. 82 313-375
  • [3] Montoro L.(1999)On the role of mean curvature in some singularly perturbed Neumann problems SIAM J. Math. Anal. 31 63-79
  • [4] Peral I.(2002)On the number of single-peak solutions of the nonlinear Schrödinger equation Ann. I. H. Poincaré AN 19 261-280
  • [5] Berestycki H.(1996)Multipeak solutions for a semilinear Neumann problem Duke Math. J. 84 739-769
  • [6] Lions P.L.(1989)Uniqueness of positive solutions of Δ Arch. Ration. Mech. Anal. 105 243-266
  • [7] DelPino M.(1998) − Commun. Partial Differ. Equ. 23 487-545
  • [8] Felmer P.(2007) +  J. Math. Anal. Appl. 336 1368-1383
  • [9] Wei J.(1988) =  0 in J. Differ. Equ. 72 1-27
  • [10] Grossi M.(1991)On a singularly perturbed equation with Neumann boundary condition Commun. Pure Appl. Math. 44 819-851