Certain problems on the commutativity of interpolation functors

被引:0
作者
A. G. Baghdasaryan
机构
[1] Yerevan State University,
来源
Journal of Contemporary Mathematical Analysis | 2013年 / 48卷
关键词
Interpolation; Peetre intersection problem; interpolation functor; intersection and union of Banach spaces; “real” and “complex” interpolation methods; 46B70; 46M35;
D O I
暂无
中图分类号
学科分类号
摘要
The paper considers some interpolation problems of type of Peetre intersection problem on commutation of interpolation functors. The general statement of the problem is to find sufficient conditions for the equality F(A, G(A0, A1)) = G(F(A, A0), F(A, A1)), where F and G are the interpolation functors.
引用
收藏
页码:123 / 138
页数:15
相关论文
共 14 条
  • [1] Peetre J(1974)Über den Durchschnitt von Interpolationsräumen Arch. Math., Basel 25 511-513
  • [2] Peetre J(1970)Non-commutative interpolation Le Matemat 25 1-15
  • [3] Grisvard P(1972)Interpolation non commutative Atti. Acad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natuz. 52 11-15
  • [4] Bagdasaryan A G(2001)On one approach to the Peetre problem of intersection Proceedings of A. Razmadze Mat. Inst, Tbilisi 126 1-10
  • [5] Maligranda L(1984)The K-functional for symmetric spaces Lecture Notes in Math. 1070 169-182
  • [6] Baouendi M S(1967)Commutation de l’intersection et des foncteurs d’interpolation C.R. Acad. Sci. Paris 265 313-315
  • [7] Goulaouic C(1970)Allgemeine Legendresche Differentialoperatoren Ann. Scuola Norm. Sup. Pisa 24 1-35
  • [8] Triebel H(1999)The Failure of Hardy’s inequality and interpolation of intersections Arkhiv Mat 37 323-344
  • [9] Krugljak N(2004)The method of real interpolation on intersection pairs On Some Interpolation Problems of Peetre Type.-Proceeding of A. Razmadze Mathematical Institute 135 27-39
  • [10] Maligranda L(2006)undefined Func. analysis and appl. 40 66-69