On the resurgence and asymptotic resurgence of homogeneous ideals

被引:0
|
作者
A. V. Jayanthan
Arvind Kumar
Vivek Mukundan
机构
[1] Indian Institute of Technology Madras,Department of Mathematics
[2] Chennai Mathematical Institute,Department of Mathematics
[3] Indian Institute of Technology Delhi,Department of Mathematics
来源
Mathematische Zeitschrift | 2022年 / 302卷
关键词
Resurgence; Asymptotic resurgence; Edge ideals; Cover ideals; Symbolic power; Chromatic number; 13F20; 13A15; 05E40;
D O I
暂无
中图分类号
学科分类号
摘要
Let K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {K}}$$\end{document} be a field and R=K[x1,…,xn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R = {\mathbb {K}}[x_1, \ldots , x_n]$$\end{document}. We obtain an improved upper bound for asymptotic resurgence of squarefree monomial ideals in R. We study the effect on the resurgence when sum, product and intersection of ideals are taken. We obtain sharp upper and lower bounds for the resurgence and asymptotic resurgence of cover ideals of finite simple graphs in terms of associated combinatorial invariants. We also explicitly compute the resurgence and asymptotic resurgence of cover ideals of several classes of graphs. We characterize a graph being bipartite in terms of the resurgence and asymptotic resurgence of edge and cover ideals. We also compute explicitly the resurgence and asymptotic resurgence of edge ideals of some classes of graphs.
引用
收藏
页码:2407 / 2434
页数:27
相关论文
共 50 条
  • [1] On the resurgence and asymptotic resurgence of homogeneous ideals
    Jayanthan, A., V
    Kumar, Arvind
    Mukundan, Vivek
    MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (04) : 2407 - 2434
  • [2] Extreme values of the resurgence for homogeneous ideals in polynomial rings
    Harbourne, Brian
    Kettinger, Jake
    Zimmitti, Frank
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (02)
  • [3] On resurgence via asymptotic resurgence
    DiPasquale, Michael
    Drabkin, Ben
    JOURNAL OF ALGEBRA, 2021, 587 : 64 - 84
  • [4] A SHARP BOUND FOR THE RESURGENCE OF SUMS OF IDEALS
    Van Kien, Do
    Nguyen, Hop d.
    Thuan, Le minh
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (04) : 1405 - 1418
  • [5] Super-resurgence: ABA renewal increases resurgence
    Kincaid, Stephanie L.
    Lattal, Kennon A.
    Spence, Jake
    BEHAVIOURAL PROCESSES, 2015, 115 : 70 - 73
  • [6] On defining resurgence
    Lattal, Kennon A.
    Cancado, Carlos R. X.
    Cook, James E.
    Kincaid, Stephanie L.
    Nighbor, Tyler D.
    Oliver, Anthony C.
    BEHAVIOURAL PROCESSES, 2017, 141 : 85 - 91
  • [7] Resurgence as Choice
    Shahan, Timothy A.
    Craig, Andrew R.
    BEHAVIOURAL PROCESSES, 2017, 141 : 100 - 127
  • [8] Behavioral momentum and resurgence: Effects of time in extinction and repeated resurgence tests
    Sweeney, Mary M.
    Shahan, Timothy A.
    LEARNING & BEHAVIOR, 2013, 41 (04) : 414 - 424
  • [9] Behavioral momentum and resurgence: Effects of time in extinction and repeated resurgence tests
    Mary M. Sweeney
    Timothy A. Shahan
    Learning & Behavior, 2013, 41 : 414 - 424
  • [10] Response effort and resurgence
    Walter, Kimberly M.
    Dickson, Chata A.
    JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR, 2023, 119 (02) : 373 - 391