Silicon improves physiological, biochemical, and morphological adaptations of alfalfa (Medicago sativa L.) during salinity stress

被引:0
|
作者
Ahmed El Moukhtari
Pierre Carol
Mohammed Mouradi
Arnould Savoure
Mohamed Farissi
机构
[1] Sultan Moulay Slimane University,Laboratory of Biotechnology & Sustainable Development of Natural Resources, Polydisciplinary Faculty
[2] Institute of Ecology and Environmental Sciences of Paris (iEES),Sorbonne Université, UPEC, CNRS, IRD, INRA
来源
Symbiosis | 2021年 / 85卷
关键词
L.; Salt stress; Silicon; Nodulation; Nitrogen fixation; Oxidative stress;
D O I
暂无
中图分类号
学科分类号
摘要
Silicon (Si) application to crops is a promising way for the deployment of sustainable agriculture. Here, the effects of Si on salt stress tolerance were investigated in alfalfa (Medicago sativa L.)-rhizobia symbioses. Two Moroccan, Ouad-Lmaleh (OL) and Demnate-201 (Dm), and one European, NS-Mediana-ZMS-V (NS-Med), alfalfa varieties were associated to Ensifer meliloti Rm41 rhizobial strain. One-month-old alfalfa plants were exposed to 120 mM NaCl for five weeks with or without 3 mM of Si. The plants subjected to salt stress showed reduced biomass, chlorophyll (Chl) contents and relative water content (RWC) in comparison to the controls. The alfalfa-rhizobia symbiosis was also impaired under stress as reflected by less root nodulation and lower nitrogen (N) content and nitrogen content index (NCI). Added Si significantly increased plant biomass, nodules number, N content, NCI, Chl contents and RWC under salt stress. Results showed that salt-stressed alfalfa increased malonyldialdehyde (MDA), hydrogen peroxide (H2O2) and electrolyte leakage (EL). However, Si incorporation in the cultured media reduced oxidative damages under salt-stress particularly in NS-Med variety by 26%, 70% and 70% for MDA, H2O2 and EL respectively. The lower amount of MDA, H2O2 and EL in the Si-treated plants seems to be related to its capacity to modulate superoxide dismutase and polyphenol oxidase activities and increase total polyphenol, flavonoid and carotenoid contents. Besides, compatible osmolytes, such as proline, glycine betaine and soluble sugars were found increased particularly in Si-treated OL plants by 46%, 33% and 26% respectively in comparison to Si-untreated plants. Alfalfa varieties reacted differently to Si treatment. Sodium concentration in alfalfa plants increased under salinity and reduced by Si treatment with an increase in the potassium content. Our findings showed that exogenous Si application could be a promising way to mitigate the toxic effect of salt and could improve alfalfa growth and its rhizobial symbiosis when grown in salt-affected soils.
引用
收藏
页码:305 / 324
页数:19
相关论文
共 50 条
  • [1] Silicon improves physiological, biochemical, and morphological adaptations of alfalfa (Medicago sativa L.) during salinity stress
    El Moukhtari, Ahmed
    Carol, Pierre
    Mouradi, Mohammed
    Savoure, Arnould
    Farissi, Mohamed
    SYMBIOSIS, 2021, 85 (03) : 305 - 324
  • [2] Morphological and biochemical response to osmotic stress in alfalfa (Medicago sativa L.)
    Safarnejad, A.
    PAKISTAN JOURNAL OF BOTANY, 2008, 40 (02) : 735 - 746
  • [3] Biochemical responses of Alfalfa (Medicago sativa L.) cultivars subjected to NaCl salinity stress
    Babakhani, B.
    Khavari-Nejad, R. A.
    Sajedi, Hassan R.
    Fahimi, H.
    Saadatmand, S.
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2011, 10 (55): : 11433 - 11441
  • [4] Evaluation of Alfalfa (Medicago sativa L.) Populations' Response to Salinity Stress
    Cornacchione, Monica V.
    Suarez, Donald L.
    CROP SCIENCE, 2017, 57 (01) : 137 - 150
  • [5] Intraspecific Variation for Leaf Physiological and Root Morphological Adaptation to Drought Stress in Alfalfa (Medicago sativa L.)
    Prince, Silvas
    Anower, Md Rokebul
    Motes, Christy M.
    Hernandez, Timothy D.
    Liao, Fuqi
    Putman, Laura
    Mattson, Rob
    Seethepalli, Anand
    Shah, Kushendra
    Komp, Michael
    Mehta, Perdeep
    York, Larry M.
    Young, Carolyn
    Monteros, Maria J.
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [6] Effects of Prolonged High Salinity Stress on Alfalfa ( Medicago sativa L.) Cultivars and Populations
    Efe, Berna
    Erguen, Namuk
    Sancak, Cengiz
    LEGUME RESEARCH, 2024, 47 (12) : 2049 - 2058
  • [7] BORON DEFICIENCY STRESS IN MEDICAGO SATIVA L.(ALFALFA)
    Cetin, E.
    ACTA PHYSIOLOGIAE PLANTARUM, 2004, 26 (03) : 241 - 242
  • [8] Metabolomic and physiological analysis of alfalfa (Medicago sativa L.) in response to saline and alkaline stress
    Guo, Rui
    Zhou, Zeyu
    Cai, Run
    Liu, Lei
    Wang, Ruixin
    Sun, Yugang
    Wang, Dan
    Yan, Zhe
    Guo, Changhong
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 207
  • [9] Physiological and transcriptional responses of contrasting alfalfa (Medicago sativa L.) varieties to salt stress
    Quan, Wenli
    Liu, Xun
    Wang, Haiqing
    Chan, Zhulong
    PLANT CELL TISSUE AND ORGAN CULTURE, 2016, 126 (01) : 105 - 115
  • [10] Physiological and transcriptional responses of contrasting alfalfa (Medicago sativa L.) varieties to salt stress
    Wenli Quan
    Xun Liu
    Haiqing Wang
    Zhulong Chan
    Plant Cell, Tissue and Organ Culture (PCTOC), 2016, 126 : 105 - 115