Facile synthesis of coral-like Pt nanoparticles/MXene (Ti3C2Tx) with efficient hydrogen evolution reaction activity

被引:0
|
作者
Bishan Li
Rongkai Ye
Qianyu Wang
Xiaoqing Liu
Pingping Fang
Jianqiang Hu
机构
[1] South China University of Technology,Nanobiological Medicine Center, Key Lab of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering
[2] Sun Yat-Sen University,Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low
来源
Ionics | 2021年 / 27卷
关键词
Platinum; MXene; Hydrogen evolution reaction; Electrocatalysts; Coral-like;
D O I
暂无
中图分类号
学科分类号
摘要
Exploring efficient catalysts for hydrogen evolution reaction (HER) is one of focus points of energy research. In this work, a series of MXene/Pt-x (wherein, x is the adding amount of 6.2 mM H2PtCl6 solution) nanomaterials were fabricated via a facile synthesis method, in which coral-like Pt nanoparticles (NPs) were deposited on Ti3C2Tx MXene. The Pt-loading amounts on the MXene could be simply controlled by varying the adding amounts of H2PtCl6, which would influence the sizes of Pt NPs on the MXene. The optimum catalytic activity was obtained on the MXene/Pt-3 with a low overpotential of 302 mV versus reversible hydrogen electrode (RHE) at 10 mA cm−2, which was about 84 mV less than MXene/Pt-2. The efficiently electrocatalytic HER activity of MXene/Pt-x nanomaterials was due to the electron transfer from MXene to Pt NPs. The HER performance of the MXene/Pt-x nanomaterials was influenced by both Pt-loading amounts and Pt particle sizes. This work expands future applications of MXene-based nanomaterials in clean energy conversion reactions.
引用
收藏
页码:1221 / 1231
页数:10
相关论文
共 50 条
  • [41] CoFe-P/Ti3C2Tx Nanosheets as Efficient Electrocatalyst for the Oxygen Evolution Reaction
    Xia, Minglong
    Yang, Mengjie
    Guo, Yuchao
    Sun, Xi
    Wang, Shuo
    Feng, Yi
    Ding, Huili
    CHEMNANOMAT, 2022, 8 (08)
  • [42] A flexible Ti3C2Tx (MXene)/paper membrane for efficient oil/water separation
    Saththasivam, Jayaprakash
    Wang, Kui
    Yiming, Wubulikasimu
    Liu, Zhaoyang
    Mahmoud, Khaled A.
    RSC ADVANCES, 2019, 9 (29) : 16296 - 16304
  • [43] Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte
    Lin, Zifeng
    Barbara, Daffos
    Taberna, Pierre-Louis
    Van Aken, Katherine L.
    Anasori, Babak
    Gogotsi, Yury
    Simon, Patrice
    JOURNAL OF POWER SOURCES, 2016, 326 : 575 - 579
  • [44] A review of how to improve Ti3C2Tx MXene stability
    Cao, Wei
    Nie, Junli
    Cao, Ye
    Gao, Chengjie
    Wang, Mingsheng
    Wang, Weiwei
    Lu, Xiaoli
    Ma, Xiaohua
    Zhong, Peng
    CHEMICAL ENGINEERING JOURNAL, 2024, 496
  • [45] A cascaded enzyme system based on the catalase-like activity of Ti3C2Tx MXene nanosheets for the efficient combination cancer therapy
    Qiao, Qianqian
    Wang, Jinyu
    Long, Kai
    Li, Linwei
    Chen, Jiahao
    Guo, Yuhao
    Xu, Ziqiang
    Kuang, Ying
    Ji, Tianjiao
    Li, Cao
    NANO TODAY, 2024, 54
  • [46] Photo-Switchable Nanoripples in Ti3C2Tx MXene
    Volkov, Mikhail
    Willinger, Elena
    Kuznetsov, Denis A.
    Muller, Christoph R.
    Fedorov, Alexey
    Baum, Peter
    ACS NANO, 2021, 15 (09) : 14071 - 14079
  • [47] Delaminated Ti3C2Tx (MXene) for electrochemical carbendazim sensing
    Wu, Dihua
    Wu, Mengyao
    Yang, Jiehui
    Zhang, Huaiwei
    Xie, Kefeng
    Lin, Cheng-Te
    Yu, Aimin
    Yu, Jinhong
    Fu, Li
    MATERIALS LETTERS, 2019, 236 : 412 - 415
  • [48] High Concentration of Ti3C2Tx MXene in Organic Solvent
    Zhang, Qingxiao
    Lai, Huirong
    Fan, Runze
    Ji, Peiyi
    Fu, Xueli
    Li, Hui
    ACS NANO, 2021, 15 (03) : 5249 - 5262
  • [49] Preparation, Characterization and Properties of Ti3C2TX MXene Aerogel
    Wu, Junming
    Guan, Hao
    Fan, Yunying
    Xi, Xiaoshuang
    Nie, Fenghao
    Liu, Yichun
    INTEGRATED FERROELECTRICS, 2022, 228 (01) : 254 - 271
  • [50] Memristive Effect in Ti3C2Tx (MXene) Polyelectrolyte Multilayers
    Aglikov, Aleksandr
    Volkova, Olga
    Bondar, Anna
    Moskalenko, Ivan
    Novikov, Alexander
    Skorb, Ekaterina V.
    Smirnov, Evgeny
    CHEMPHYSCHEM, 2023, 24 (17)