Inequalities of singular values and unitarily invariant norms for sums and products of matrices

被引:1
作者
Zhao, Jianguo [1 ]
机构
[1] Yangtze Normal Univ, Sch Math & Stat, Fuling 408100, Chongqing, Peoples R China
关键词
Singular values; Majorization; Positive semidefinite matrices; Unitarily invariant norms;
D O I
10.1007/s11117-024-01053-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we investigate inequalities of singular values and unitarily invariant norms for sums and products of matrices. First, we prove that s2(XY & lowast;)< wlogs((X & lowast;X)q(Y & lowast;Y)(X & lowast;X)1-q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s<^>{2}\big (XY<^>{*}\big )\prec _{w\log }s\big ((X<^>{*}X)<^>{q}(Y<^>{*}Y)(X<^>{*}X)<^>{1-q}\big )$$\end{document}, where X,Y is an element of Mn(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X,\ Y\in M_{n}(C)$$\end{document} and 0<q<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<q<1$$\end{document}. Based on this result, we present some inequalities between sum of the t-geometric mean and sum of the product of matrices. Those obtained results are the generalization of the present results. In the end, we present a singular values version of Audenaert's inequality [1].
引用
收藏
页数:12
相关论文
共 13 条
[1]   A NORM INEQUALITY FOR PAIRS OF COMMUTING POSITIVE SEMIDEFINITE MATRICES [J].
Audenaert, Koenraad M. R. .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 :80-84
[2]  
Bhatia R., 1997, MATRIX ANAL
[3]   A matrix subadditivity inequality for f (A+B) and f(A)+f(B) [J].
Bourin, Jean-Christophe ;
Uchiyama, Mitsuru .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (2-3) :512-518
[4]   MATRIX SUBADDITIVITY INEQUALITIES AND BLOCK-MATRICES [J].
Bourin, Jean-Christophe .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (06) :679-691
[5]  
Dinh TH., 2016, Math. Inequal. Appl, V19, P765
[6]   On norm inequalities related to the geometric mean [J].
Freewan, Shaima'a ;
Hayajneh, Mostafa .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 670 :104-120
[7]  
Hayajneh M, 2017, MATH INEQUAL APPL, P225, DOI 10.7153/mia-20-16
[8]   TRACE INEQUALITIES AND A QUESTION OF BOURIN [J].
Hayajneh, Saja ;
Kittaneh, Fuad .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 88 (03) :384-389
[9]   Generalizations of Ky Fan's dominance theorem [J].
Li, CK ;
Mathias, R .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 19 (01) :99-106
[10]   Remarks on two recent results of Audenaert [J].
Lin, Minghua .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 489 :24-29