A generative artificial intelligence framework based on a molecular diffusion model for the design of metal-organic frameworks for carbon capture

被引:29
作者
Park, Hyun [1 ,2 ,3 ]
Yan, Xiaoli [1 ,4 ]
Zhu, Ruijie [1 ,5 ]
Huerta, Eliu A. [1 ,6 ,7 ]
Chaudhuri, Santanu [1 ,4 ]
Cooper, Donny [8 ]
Foster, Ian [1 ,6 ]
Tajkhorshid, Emad [2 ,3 ,9 ]
机构
[1] Argonne Natl Lab, Data Sci & Learning Div, Lemont, IL 60439 USA
[2] Univ Illinois, Theoret & Computat Biophys Grp, NIH Resource Macromol Modeling & Visualizat, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[3] Univ Illinois, Ctr Biophys & Quantitat Biol, Urbana, IL 61801 USA
[4] Univ Illinois, Multiscale Mat & Mfg Lab, Chicago, IL 60607 USA
[5] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[6] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[7] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[8] TotalEnergies EP Res & Technol USA LLC, Data Sci & AI Dept, Computat Sci & Engn, Houston, TX 77002 USA
[9] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
UNIVERSAL FORCE-FIELD; ATOMIC CHARGES; CO2; ADSORPTION; SEPARATION; PERFORMANCE; ALGORITHM; MECHANISM; EXTENSION; ROBUST; MOFS;
D O I
10.1038/s42004-023-01090-2
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal-organic frameworks (MOFs) exhibit great promise for CO2 capture. However, finding the best performing materials poses computational and experimental grand challenges in view of the vast chemical space of potential building blocks. Here, we introduce GHP-MOFassemble, a generative artificial intelligence (AI), high performance framework for the rational and accelerated design of MOFs with high CO2 adsorption capacity and synthesizable linkers. GHP-MOFassemble generates novel linkers, assembled with one of three pre-selected metal nodes (Cu paddlewheel, Zn paddlewheel, Zn tetramer) into MOFs in a primitive cubic topology. GHP-MOFassemble screens and validates AI-generated MOFs for uniqueness, synthesizability, structural validity, uses molecular dynamics simulations to study their stability and chemical consistency, and crystal graph neural networks and Grand Canonical Monte Carlo simulations to quantify their CO2 adsorption capacities. We present the top six AI-generated MOFs with CO2 capacities greater than 2m mol g-1, i.e., higher than 96.9% of structures in the hypothetical MOF dataset. Metal-organic frameworks have demonstrated great promise for application in CO2 capture, but the enormous breadth of potential building blocks available makes searching the chemical space for the best-performing materials challenging via traditional methods. Here, the authors present a high-throughput computational framework based on a molecular generative diffusion model to accelerate the discovery of MOF structures with high CO2 capacities and synthesizable linkers.
引用
收藏
页数:18
相关论文
共 70 条
[1]   Extension of the Universal Force Field to Metal-Organic Frameworks [J].
Addicoat, Matthew A. ;
Vankova, Nina ;
Akter, Ismot Farjana ;
Heine, Thomas .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (02) :880-891
[2]   Machine Learning Meets with Metal Organic Frameworks for Gas Storage and Separation [J].
Altintas, Cigdem ;
Altundal, Omer Faruk ;
Keskin, Seda ;
Yildirim, Ramazan .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (05) :2131-2146
[3]   An extensive comparative analysis of two MOF databases: high-throughput screening of computation-ready MOFs for CH4 and H2 adsorption [J].
Altintas, Cigdem ;
Avci, Gokay ;
Daglar, Hilal ;
Azar, Ayda Nemati Vesali ;
Erucar, Ilknur ;
Velioglu, Sadiye ;
Keskin, Seda .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (16) :9593-9608
[4]   OChemDb: the free online Open Chemistry Database portal for searching and analysing crystal structure information [J].
Altomare, Angela ;
Corriero, Nicola ;
Cuocci, Corrado ;
Falcicchio, Aurelia ;
Moliterni, Anna ;
Rizzi, Rosanna .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2018, 51 :1229-1236
[5]   High and Selective CO2 Uptake in a Cobalt Adeninate Metal-Organic Framework Exhibiting Pyrimidine- and Amino-Decorated Pores [J].
An, Jihyun ;
Geib, Steven J. ;
Rosi, Nathaniel L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (01) :38-+
[6]  
Anderson R., cif2lammps
[7]   Do New MOFs Perform Better for CO2 Capture and H2 Purification? Computational Screening of the Updated MOF Database [J].
Avci, Gokay ;
Erucar, Ilknur ;
Keskin, Seda .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (37) :41567-41579
[8]   GEOM, energy-annotated molecular conformations for property prediction and molecular generation [J].
Axelrod, Simon ;
Gomez-Bombarelli, Rafael .
SCIENTIFIC DATA, 2022, 9 (01)
[9]   MOFX-DB: An Online Database of Computational Adsorption Data for Nanoporous Materials [J].
Bobbitt, N. Scott ;
Shi, Kaihang ;
Bucior, Benjamin J. ;
Chen, Haoyuan ;
Tracy-Amoroso, Nathaniel ;
Li, Zhao ;
Sun, Yangzesheng ;
Merlin, Julia H. ;
Siepmann, J. Ilja ;
Siderius, Daniel W. ;
Snurr, Randall Q. .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2023, 68 (02) :483-498
[10]   Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models [J].
Bond-Taylor, Sam ;
Leach, Adam ;
Long, Yang ;
Willcocks, Chris G. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) :7327-7347