Tachyonic (phantom) power-law cosmology

被引:0
作者
Rachan Rangdee
Burin Gumjudpai
机构
[1] Naresuan University,The Institute for Fundamental Study “The Tah Poe Academia Institute”
[2] Ministry of Education,Thailand Center of Excellence in Physics
来源
Astrophysics and Space Science | 2014年 / 349卷
关键词
Power-law cosmology; Tachyonic dark energy;
D O I
暂无
中图分类号
学科分类号
摘要
Tachyonic scalar field-driven late universe with dust matter content is considered. The cosmic expansion is modeled with power-law and phantom power-law expansion at late time, i.e. z≲0.45. WMAP7 and its combined data are used to constraint the model. The forms of potential and the field solution are different for quintessence and tachyonic cases. Power-law cosmology model (driven by either quintessence or tachyonic field) predicts unmatched equation of state parameter to the observational value, hence the power-law model is excluded for both quintessence and tachyonic field. In the opposite, the phantom power-law model predicts agreeing valued of equation of state parameter with the observational data for both quintessence and tachyonic cases, i.e. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w_{\phi, 0} = -1.49^{+11.64}_{-4.08}$\end{document} (WMAP7+BAO+H0) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w_{\phi, 0} = -1.51^{+3.89}_{-6.72} $\end{document} (WMAP7). The phantom-power law exponent β must be less than about −6, so that the −2<wϕ,0<−1. The phantom power-law tachyonic potential is reconstructed. We found that dimensionless potential slope variable Γ at present is about 1.5. The tachyonic potential reduced to V=V0ϕ−2 in the limit Ωm,0→0.
引用
收藏
页码:975 / 984
页数:9
相关论文
共 132 条
  • [1] Abramo L.R.W.(2003)undefined Phys. Lett. B 575 165-undefined
  • [2] Finelli F.(2004)undefined Phys. Rev. D 69 1220-undefined
  • [3] Aguirregabiria J.M.(1982)undefined Phys. Rev. Lett. 48 287-undefined
  • [4] Lazkoz R.(2002)undefined Mon. Not. R. Astron. Soc. 334 457-undefined
  • [5] Albrecht A.(2003)undefined Mon. Not. R. Astron. Soc. 342 712-undefined
  • [6] Steinhardt P.J.(2004)undefined Mon. Not. R. Astron. Soc. 353 4438-undefined
  • [7] Allen S.W.(2010)undefined Astrophys. J. 716 31-undefined
  • [8] Schmidt R.W.(2000)undefined Phys. Rev. Lett. 85 1664-undefined
  • [9] Fabian A.C.(2001)undefined Phys. Rev. D 63 23-undefined
  • [10] Allen S.W.(2006)undefined Astron. Astrophys. 447 314-undefined