Structural connections between a forcing class and its modal logic

被引:0
作者
Joel David Hamkins
George Leibman
Benedikt Löwe
机构
[1] The Graduate Center of The City University of New York,Mathematics Program
[2] The College of Staten Island of CUNY,Department of Mathematics
[3] The City University of New York,Department of Mathematics and Computer Science, Bronx Community College
[4] Universiteit van Amsterdam,Institute for Logic, Language and Computation
[5] Universität Hamburg,Fachbereich Mathematik
来源
Israel Journal of Mathematics | 2015年 / 207卷
关键词
Modal Logic; Boolean Algebra; Modal Theory; Propositional Variable; Kripke Model;
D O I
暂无
中图分类号
学科分类号
摘要
Every definable forcing class Γ gives rise to a corresponding forcing modality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square _\Gamma }$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\square _{\Gamma \varphi }}$$\end{document} means that ϕ is true in all Γ extensions, and the valid principles of Γ forcing are the modal assertions that are valid for this forcing interpretation. For example, [10] shows that if ZFC is consistent, then the ZFC-provably valid principles of the class of all forcing are precisely the assertions of the modal theory S4.2. In this article, we prove similarly that the provably valid principles of collapse forcing, Cohen forcing and other classes are in each case exactly S4.3; the provably valid principles of c.c.c. forcing, proper forcing, and others are each contained within S4.3 and do not contain S4.2; the provably valid principles of countably closed forcing, CH-preserving forcing and others are each exactly S4.2; and the provably valid principles of ω1-preserving forcing are contained within S4.tBA. All these results arise from general structural connections we have identified between a forcing class and the modal logic of forcing to which it gives rise.
引用
收藏
页码:617 / 651
页数:34
相关论文
共 15 条
[1]  
Abraham U.(1983)On forcing without the continuum hypothesis Journal of Symbolic Logic 48 658-661
[2]  
Esakia L.(2012)Fatal Heyting algebras and forcing persistent sentences Studia Logica 100 163-173
[3]  
Löwe B.(2008)Closed maximality principles: implications, separations and combinations Journal of Symbolic Logic 73 276-308
[4]  
Fuchs G.(2009)Combined maximality principles up to large cardinals Journal of Symbolic Logic 74 1015-1046
[5]  
Fuchs G.(1970)The decidability of the Kreisel-Putnam system Journal of Symbolic Logic 35 431-437
[6]  
Gabbay D. M.(2003)A simple maximality principle Journal of Symbolic Logic 68 527-550
[7]  
Hamkins J. D.(2008)The modal logic of forcing Transactions of the American Mathematical Society 360 1793-1817
[8]  
Hamkins J. D.(2005)The necessary maximality principle for c.c.c. forcing is equiconsistent with a weakly compact cardinal Mathematical Logic Quarterly 51 493-498
[9]  
Löwe B.(2010) MPCCC( Notre Dame Journal of Formal Logic 51 181-193
[10]  
Hamkins J. D.(1979)Impossibility of finite axiomatization of Medvedev’s logic of finite problems Doklady Akademii Nauk SSSR 245 1051-1054