Autophagy Inhibition by ATG3 Knockdown Remits Oxygen–Glucose Deprivation/Reoxygenation-Induced Injury and Inflammation in Brain Microvascular Endothelial Cells

被引:0
|
作者
Zhaolong Peng
Daofei Ji
Lukuan Qiao
Yuedong Chen
Hongjuan Huang
机构
[1] Nanshi Hospital,Department of Severe Encephalopathy
[2] The Second Affiliated Hospital of Xuzhou Medical University,Department of Neurosurgery
[3] The Affiliated Huai’an Hospital of Xuzhou Medical University,Department of Neurology, Huai’an Second People’s Hospital
来源
Neurochemical Research | 2021年 / 46卷
关键词
Autophagy; ATG3; Cerebral ischemia/reperfusion; Stork;
D O I
暂无
中图分类号
学科分类号
摘要
Autophagy participates in the development of cerebral ischemia stroke. Autophagy-related 3 (ATG3), an important autophagy regulator, was reported to be upregulated in a rat model of cerebral ischemia/reperfusion (CI/R) injury and an oxygen–glucose deprivation/reoxygenation (OGD/R) cell model. However, the detailed role of ATG3 in CI/R injury remains elusive. An in vitro cellular model was established to mimic CI/R injury by exposing hBMECs and bEnd.3 cells to OGD/R. OGD/R-induced injury were evaluated by cell counting kit-8 (CCK-8), LDH release assay, caspase-3 activity assay and TUNEL assay. Inflammation was assessed by detecting mRNA expression and concentrations of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) using qRT-PCR and ELISA, respectively. The protein levels of ATG3, light chain 3 (LC3)-I, LC3-II, p62, protein kinase B (Akt), and phosphorylated Akt (p-Akt) were determined by western blot analysis. We successfully established an in vitro OGD/R injury model using hBMECs and bEnd.3 cells. ATG3 was time-dependently upregulated and ATG3 knockdown inhibited autophagy in OGD/R-challenged brain microvascular endothelial cells. Moreover, autophagy inhibition by ATG3 interference attenuated OGD/R-induced viability inhibition and increase of LDH release, caspase-3 activity, programmed cell death, and production of IL-1β, IL-6 and TNF-α. Inhibition of autophagy by ATG3 silencing activated the phosphoinositide 3-kinase (PI3K)/Akt pathway in OGD/R-challenged brain microvascular endothelial cells. Furthermore, inhibition of the PI3K/Akt pathway reversed the protective effects of ATG3 silencing on OGD/R-induced injury and inflammation. In conclusion, autophagy inhibition by ATG3 knockdown remitted OGD/R-induced injury and inflammation in brain microvascular endothelial cells via activation of the PI3K/Akt pathway.
引用
收藏
页码:3200 / 3212
页数:12
相关论文
共 50 条
  • [1] Autophagy Inhibition by ATG3 Knockdown Remits Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury and Inflammation in Brain Microvascular Endothelial Cells
    Peng, Zhaolong
    Ji, Daofei
    Qiao, Lukuan
    Chen, Yuedong
    Huang, Hongjuan
    NEUROCHEMICAL RESEARCH, 2021, 46 (12) : 3200 - 3212
  • [2] Zhongfenggao Protects Brain Microvascular Endothelial Cells from Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury by Angiogenesis
    Huang, Shenghui
    Gong, Ting
    Zhang, Tengfei
    Wang, Xinfeng
    Cheng, Qianqian
    Li, Yanyi
    BIOLOGICAL & PHARMACEUTICAL BULLETIN, 2019, 42 (02) : 222 - 230
  • [3] MicroRNA-429/Cxcl1 Axis Protective Against Oxygen Glucose Deprivation/Reoxygenation-Induced Injury in Brain Microvascular Endothelial Cells
    Leng, Jun
    Liu, Wei
    Li, Li
    Wei, Fang Yue
    Tian, Meng
    Liu, Hui Min
    Guo, Wen
    DOSE-RESPONSE, 2020, 18 (02):
  • [4] Silencing of circular RNA ANRIL attenuates oxygen–glucose deprivation and reoxygenation-induced injury in human brain microvascular endothelial cells by sponging miR-622
    Su Jiang
    Gaonian Zhao
    Jun Lu
    Min Jiang
    Zhenggang Wu
    Yujing Huang
    Jing Huang
    Jinghua Shi
    Jing Jin
    Xinxuan Xu
    Xuehua Pu
    Biological Research, 53
  • [5] TAK-242 protects against oxygen-glucose deprivation and reoxygenation-induced injury in brain microvascular endothelial cells and alters the expression pattern of lncRNAs
    Kong, Li-Yun
    Zhu, Shen-Yu
    Si, Mao-Yan
    Xu, Xue-Hua
    Yu, Jun-Jian
    Zhong, Wei-Xiang
    Sang, Cheng-Peng
    Rao, Ding-Yu
    Xie, Fa-Chun
    Liu, Zi-You
    Tang, Zhi-Xian
    JOURNAL OF THORACIC DISEASE, 2023, 15 (05) : 2571 - +
  • [6] Silencing of circular RNA ANRIL attenuates oxygen-glucose deprivation and reoxygenation-induced injury in human brain microvascular endothelial cells by sponging miR-622
    Jiang, Su
    Zhao, Gaonian
    Lu, Jun
    Jiang, Min
    Wu, Zhenggang
    Huang, Yujing
    Huang, Jing
    Shi, Jinghua
    Jin, Jing
    Xu, Xinxuan
    Pu, Xuehua
    BIOLOGICAL RESEARCH, 2020, 53 (01)
  • [7] Senkyunolide I attenuates oxygen-glucose deprivation/reoxygenation-induced inflammation in microglial cells
    Hu, Yang-ye
    Wang, Yuan
    Liang, Shuang
    Yu, Xue-li
    Zhang, Lei
    Feng, Lin-yin
    Feng, Yi
    BRAIN RESEARCH, 2016, 1649 : 123 - 131
  • [8] Higenamine protects neuronal cells from oxygen-glucose deprivation/reoxygenation-induced injury
    Zhang, Yi
    Zhang, Jingjing
    Wu, Chuntao
    Guo, Sheng
    Su, Jing
    Zhao, Wendong
    Xing, Hongxia
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2019, 120 (03) : 3757 - 3764
  • [9] Effects of thymosin β4 on oxygen-glucose deprivation and reoxygenation-induced injury
    Ji, Hua
    Xu, Linhao
    Wang, Zheng
    Fan, Xinli
    Wu, Lihui
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2018, 41 (03) : 1749 - 1755
  • [10] DPP-4 inhibitor saxagliptin ameliorates oxygen deprivation/reoxygenation-induced brain endothelial injury
    Zeng, Xudong
    Li, Xiaohui
    Chen, Zhenbo
    Yao, Qinghe
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2019, 11 (10): : 6316 - 6325