The Kähler–Ricci flow with positive bisectional curvature

被引:0
作者
D.H. Phong
Jian Song
Jacob Sturm
Ben Weinkove
机构
[1] Columbia University,Department of Mathematics
[2] Rutgers University,Department of Mathematics
[3] Rutgers University,Department of Mathematics
[4] Harvard University,Department of Mathematics
来源
Inventiones mathematicae | 2008年 / 173卷
关键词
Manifold; Curvature Tensor; Complex Dimension; Ricci Soliton; Ricci Flow;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the Kähler–Ricci flow on a manifold with positive first Chern class converges to a Kähler–Einstein metric assuming positive bisectional curvature and certain stability conditions.
引用
收藏
页码:651 / 665
页数:14
相关论文
共 31 条
[1]  
Bando S.(1984)On three-dimensional compact Kähler manifolds of nonnegative bisectional curvature J. Differ. Geom. 19 284-297
[2]  
Cao H.D.(2003)Ricci flow on compact Kähler manifolds of positive bisectional curvature C. R., Math., Acad. Sci. Paris 337 781-784
[3]  
Chen B.L.(2007)On Kähler manifolds with positive orthogonal bisectional curvature Adv. Math. 215 427-445
[4]  
Zhu X.P.(2006)A note on uniformization of Riemann surfaces by Ricci flow Proc. Am. Math. Soc. 134 3391-3393
[5]  
Chen X.(2006)Ricci flow on Kähler–Einstein manifolds Duke Math. J. 131 17-73
[6]  
Chen X.(1991)The Ricci flow on the 2-sphere J. Differ. Geom. 33 325-334
[7]  
Lu P.(1967)Holomorphic bisectional curvature J. Differ. Geom. 1 225-233
[8]  
Tian G.(1995)A compactness property for solutions of the Ricci flow Am. J. Math. 117 545-572
[9]  
Chen X.(1988)The uniformization Theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature J. Differ. Geom. 27 179-214
[10]  
Tian G.(1979)Projective manifolds with ample tangent bundles Ann. Math. (2) 110 593-606