Narrow Escape, Part I

被引:0
作者
A. Singer
Z. Schuss
D. Holcman
R. S. Eisenberg
机构
[1] Yale University,Department of Mathematics
[2] Tel-Aviv University,Department of Mathematics
[3] Weizmann Institute of Science,Department of Mathematics
[4] Rush Medical Center,Department of Molecular Biophysics and Physiology
来源
Journal of Statistical Physics | 2006年 / 122卷
关键词
Brownian motion; Exit problem; Singular perturbations;
D O I
暂无
中图分类号
学科分类号
摘要
A Brownian particle with diffusion coefficient D is confined to a bounded domain Ω by a reflecting boundary, except for a small absorbing window \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial\Omega_a$$\end{document}. The mean time to absorption diverges as the window shrinks, thus rendering the calculation of the mean escape time a singular perturbation problem. In the three-dimensional case, we construct an asymptotic approximation when the window is an ellipse, assuming the large semi axis a is much smaller than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\Omega|^{1/3}$$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\Omega|$$\end{document} is the volume), and show that the mean escape time is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E\tau\sim{\frac{|\Omega|}{2\pi Da}} K(e)$$\end{document}, where e is the eccentricity and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K(\cdot)$$\end{document} is the complete elliptic integral of the first kind. In the special case of a circular hole the result reduces to Lord Rayleigh's formula \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E\tau\sim{\frac{|\Omega|}{4aD}}$$\end{document}, which was derived by heuristic considerations. For the special case of a spherical domain, we obtain the asymptotic expansion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E\tau={\frac{|\Omega|}{4aD}} [1+\frac{a}{R} \log \frac{R}{a} + O(\frac{a}{R})]$$\end{document}. This result is important in understanding the flow of ions in and out of narrow valves that control a wide range of biological and technological function. If Ω is a two-dimensional bounded Riemannian manifold with metric g and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon=|\partial\Omega_a|_g/|\Omega|_g\ll1$$\end{document}, we show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E\tau ={\frac{|\Omega|_g}{D\pi}}[\log{\frac{1}{\varepsilon}}+O(1)]$$\end{document}. This result is applicable to diffusion in membrane surfaces.
引用
收藏
页码:437 / 463
页数:26
相关论文
共 61 条
[1]  
Im W.(2002)Ion permeation and selectivity of ompf porin: A theoretical study based on molecular dynamics, brownian dynamics, and continuum electrodiffusion theory J. Mol. Bio. 322 851-869
[2]  
Roux B.(2002)Ions and counterions in a biological channel: A molecular dynamics simulation of ompf porin from escherichia coliin an explicit membrane with 1 m kcl aqueous salt solution J. Mol. Bio. 319 1177-1197
[3]  
Im W.(2002)Reservoir boundaries in brownian dynamics simulations of ion channels Biophys. J. 82 1975-1984
[4]  
Roux B.(2003)Self-consistent particle based simulations of three dimensional ionic solutions Nanotech 3 443-340
[5]  
Corry B.(2002)Three-dimensional continuum simulations of ion transport through biological ion channels: Effects of charge distribution in the constriction region of porin J. Computational Electronics 1 335-12478
[6]  
Hoyles M.(2003)Equilibration in two chambers connected by a capillary J. Chem. Phys. 119 12473-1014
[7]  
Allen T. W.(2004)Escape through a small opening: Receptor trafficking in a synaptic membrane J. Stat. Phys. 117 975-91
[8]  
Walker M.(2004)Calcium dynamics in denritic spines and spine motility Bio. J. 87 81-2663
[9]  
Kuyucak S.(2004)Dynamic regulation of spine-dendrite coupling in cultured hippocampal neurons Euro. J. Neuroscience 20 2649-450
[10]  
Chung S. H.(1989)The impact of postsynaptic calcium on synaptic transmission–its role in long-term potentiation Trends Neurosci. 12 444-9577