Group actions on categories and Elagin’s theorem revisited

被引:7
作者
Shinder E. [1 ]
机构
[1] School of Mathematics and Statistics, University of Sheffield, The Hicks Building, Hounsfield Road, Sheffield
关键词
Derived categories of coherent sheaves; Elagin’s theorem; Group actions on categories;
D O I
10.1007/s40879-017-0150-8
中图分类号
学科分类号
摘要
After recalling basic definitions and constructions for a finite group G action on a k-linear category we give a concise proof of the following theorem of Elagin: if C= ⟨ A, B⟩ is a semiorthogonal decomposition of a triangulated category which is preserved by the action of G, and CG is triangulated, then there is a semiorthogonal decomposition CG= ⟨ AG, BG⟩. We also prove that any G-action on C is weakly equivalent to a strict G-action which is the analog of the Coherence theorem for monoidal categories. © 2017, Springer International Publishing AG.
引用
收藏
页码:413 / 422
页数:9
相关论文
共 9 条
[1]  
Bondal A.I., Kapranov M.M., Representable functors, Serre functors, and mutations, Math. USSR Izv., 35, 3, pp. 519-541, (1990)
[2]  
Deligne P., Action du groupe des tresses sur une catégorie, Invent. Math., 128, 1, pp. 159-175, (1997)
[3]  
Elagin A.D., Descent theory for semiorthogonal decompositions, Sb. Math., 203, 5-6, pp. 645-676, (2012)
[4]  
On equivariant triangulated categories, (2014)
[5]  
Ganter N., Kapranov M., Symmetric and exterior powers of categories, Transform. Groups, 19, 1, pp. 57-103, (2014)
[6]  
Kelly G.M., Street R., Review of the elements of 2 -categories, Category Seminar, 420, pp. 75-103, (1974)
[7]  
Leinster T., Higher Operads, Higher Categories, 298, (2004)
[8]  
Niwa M., Theory of G -categories, Mem. Fac. Ed. Shiga Univ. Nat. Sci. Ped. Sci., 40, 1990, pp. 1-24, (1991)
[9]  
Sosna P., Linearisations of triangulated categories with respect to finite group actions, Math. Res. Lett., 19, 5, pp. 1007-1020, (2012)