Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textit{EQ}}_1^{rot}$$\end{document} Nonconforming Finite Element

被引:0
作者
Dongyang Shi
Junjun Wang
Fengna Yan
机构
[1] Zhengzhou University,School of Mathematics and Statistics
关键词
Nonlinear parabolic equation; Temporal error and spatial error; nonconforming FEM; Unconditionally; Superclose result; 65N15; 65N30;
D O I
10.1007/s10915-016-0243-4
中图分类号
学科分类号
摘要
Nonlinear parabolic equation is studied with a linearized Galerkin finite element method. First of all, a time-discrete system is established to split the error into two parts which are called the temporal error and the spatial error, respectively. On one hand, a rigorous analysis for the regularity of the time-discrete system is presented based on the proof of the temporal error skillfully. On the other hand, the spatial error is derived τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-independently with the above achievements. Then, the superclose result of order O(h2+τ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^2+\tau ^2)$$\end{document} in broken H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-norm is deduced without any restriction of τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}. The two typical characters of the EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textit{EQ}}_1^{rot}$$\end{document} nonconforming FE (see Lemma 1 below) play an important role in the procedure of proof. At last, numerical results are provided in the last section to confirm the theoretical analysis. Here, h is the subdivision parameter, and τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, the time step.
引用
收藏
页码:85 / 111
页数:26
相关论文
共 75 条
[1]  
Gao GH(2010)Cubic superconvergent finite volume element method for one-dimensional elliptic and parabolic equations J. Comput. Appl. Math. 233 2285-2301
[2]  
Wang TK(2003)Error estimates for the finite volume element method for parobolic equations in convex polygonal domains Numer. Methods Partial Differ. Equ. 20 650-674
[3]  
Chatzipantelidis P(2008)Alternating direction finite volume element methods for 2D parabolic partial differential equations Numer. Methods Partial Differ. Equ. 24 24-40
[4]  
Lazarov RD(2008)Some new error estimates of a semidicrete finite volume element method for a parabolic integro-differential equation with nonsmooth initial data SIAM J. Numer. Anal. 43 2320-2344
[5]  
Thomée V(2000)Improved error estimation of dynamic finite element methods for second-order parabolic equations J. Comput. Appl. Math. 126 319-338
[6]  
Wang TK(2013)Immersed finite element methods for parabolic equations with moving interface Numer. Methods Partial Differ. Equ. 29 619-646
[7]  
Sinha RK(2013)Weak Galerkin finite element methods for parabolic equations Numer. Methods Partial Differ. Equ. 29 2004-2024
[8]  
Ewing RE(2003)An SIAM J. Numer. Anal. 40 1475-1490
[9]  
Lazarov RD(2013)-galerkin mixed finite element method for an evolution equation with a positive-type memory term Comput. Math. Appl. 66 2362-2375
[10]  
Yang DQ(2014)Superconvergence of an J. Comput. Appl. Math. 267 33-48