Impact of Exhaust Gas Recirculation (EGR) on the Emission of the Dual-Fuel Diesel Engine with Hydrogen as a Secondary Fuel

被引:6
作者
Lata D.B. [1 ]
Ahmad A. [2 ,3 ]
Prakash O. [2 ]
Khan M.M. [2 ]
Chatterjee R. [4 ]
Hasnain S.M.M. [2 ]
机构
[1] Department of Energy Engineering, Central University of Jharkhand, Ranchi, Jharkhand
[2] Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand
[3] Faculty of Engineering and Applied Sciences, Usha Martin University, Ranchi, Jharkhand
[4] Department of HMCT, Birla Institute of Technology, Mesra, Ranchi, Jharkhand
关键词
Alternative fuel; Dual fuel; Exhaust gas recirculation; NO[!sub]x[!/sub; Secondary fuel;
D O I
10.1007/s40032-021-00776-7
中图分类号
学科分类号
摘要
Hydrogen is one of the best alternatives for conventional fuels because it is free from carbon. Hydrogen has its own benefits and limitations in its use as a conventional fuel in automotive engine system. However, hydrogen increases the performance along with NOx formation. One of the methods to reduce NOx without comprising its performance is addition of exhaust gas recirculation (EGR). In the present investigation, the formation of carbon monoxide (CO), carbon dioxide (CO2), un-burnt hydrocarbon (HC) and oxides of nitrogen (NOx) was measured on four-cylinder water-cooled turbocharged direct ignition (DI) compression ignition diesel engine with diesel as a base fuel and hydrogen as a gaseous fuel (0–5%) by using EGR technique (5–10%) at various load conditions. The formation of NOx gets decreased by 37.82, 48.29 and 75.95% by using 5%, 10% and 15% EGR, respectively, at 40% load conditions as compared with pure diesel operation. Similarly, as the engine runs on dual-fuel modes with 5% substitutions of diesel fuel with hydrogen fuel (H2), the formation of NOx gets decreased by 21.16 and 29.90%, at 40% load conditions by using 5 and 10% EGR, respectively, as compared to pure diesel operation. Further, the formation of CO, CO2 and HC also gets decreased by the addition of 5% EGR in the gaseous–air mixture, while it increases beyond 5% EGR in dual-fuel mode conditions. The maximum quantity of the hydrogen and EGR substitution is limited due to knock in the engine. © 2021, The Institution of Engineers (India).
引用
收藏
页码:1489 / 1502
页数:13
相关论文
共 50 条
  • [31] Diesel and natural gas dual-fuel RCCI engine performance at high altitude
    Liu, Shaohua
    Zhao, Weiyi
    Chai, Litian
    Shen, Lizhong
    Xin, Qianfan
    Jin, Jiachen
    Bi, Yuhua
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2024, 49 (01):
  • [32] Diesel and natural gas dual-fuel RCCI engine performance at high altitude
    Shaohua Liu
    Weiyi Zhao
    Litian Chai
    Lizhong Shen
    Qianfan Xin
    Jiachen Jin
    Yuhua Bi
    Sādhanā, 49
  • [33] A phenomenological combustion analysis of a dual-fuel natural-gas diesel engine
    Xu, Shuonan
    Anderson, David
    Hoffman, Mark
    Prucka, Robert
    Filipi, Zoran
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2017, 231 (01) : 66 - 83
  • [34] Combustion performance and stability of a dual-fuel diesel-natural-gas engine
    Sun, Lu
    Liu, Yifu
    Zeng, Ke
    Yang, Rui
    Hang, Zuohua
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2015, 229 (02) : 235 - 246
  • [35] Investigation of the effects of exhaust and power loss in dual-fuel six-stroke engine with EGR technology
    Kanna, I. Vinoth
    Pinky, D.
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2020, 41 (11) : 1270 - 1275
  • [36] Enhancement of the combustion process in dual-fuel engines at part loads using exhaust gas recirculation
    Pirouzpanah, V.
    Saray, R. Khoshbakhti
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2007, 221 (D7) : 877 - 888
  • [37] Comparative assessment of biogas and producer gas with diesel in a twin cylinder dual-fuel diesel engine
    Chandrakanta Nayak
    Bibhuti B. Sahoo
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42
  • [38] An optical investigation of substitution rates on natural gas/diesel dual-fuel combustion in a diesel engine
    Lee, Chia-fon
    Pang, Yuxin
    Wu, Han
    Nithyanandan, Karthik
    Liu, Fushui
    APPLIED ENERGY, 2020, 261
  • [39] Impact of exhaust gas recirculation (EGR) on soot reactivity from a diesel engine operating at high load
    Li, Xinling
    Xu, Zhen
    Guan, Chun
    Huang, Zhen
    APPLIED THERMAL ENGINEERING, 2014, 68 (1-2) : 100 - 106
  • [40] Effects of Fuel Stratification on Cyclic Variability of an Ethanol/Diesel Dual-Fuel Engine
    Dong S.
    Yang C.
    Ou B.
    Lu H.
    Xu H.
    Cheng X.
    Neiranji Xuebao/Transactions of CSICE (Chinese Society for Internal Combustion Engines), 2019, 37 (04): : 297 - 304