Local stability of a generalized Cauchy equation in Banach spaces

被引:0
|
作者
Y. Dong
B. Zheng
机构
[1] Wuhan Textile University,School of Mathematics and Computer
[2] The University of Memphis,Department of Mathematical Sciences
来源
Acta Mathematica Hungarica | 2016年 / 150卷
关键词
stability; Banach space; additive mapping; functional equation; primary 39B82; secondary 39B52;
D O I
暂无
中图分类号
学科分类号
摘要
Let (G,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(G, \cdot)}$$\end{document} be a group and E be a Banach space. Assume that f:G→E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f \colon G\rightarrow E}$$\end{document} is a map such that f(G) is an open set containing 0. If there exists an ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon > 0}$$\end{document} and a p > 1 so that |‖f(x)+f(y)‖-‖f(xy)‖|≤εmin{‖f(x)+f(y)‖p,‖f(xy)‖p}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\big| \|f(x) + f(y)\| - \|f(xy)\|\big| \leq \varepsilon \min \big \{\|f(x) + f(y)\|^p, \|f(xy)\|^p\big\}$$\end{document}for all x,y∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x, y \in G}$$\end{document}, then f is an additive map onto E. If E is a finite-dimensional Banach space, the result holds when f(G) (not necessarily open) contains 0 as an interior point.
引用
收藏
页码:472 / 478
页数:6
相关论文
共 50 条